Конечно же, если установить в одном из ответвлений детектор, который будет регистрировать, прошел ли фотон этим маршрутом, мы увидим его в половине случаев, а эффект интерференции пропадет, так как теперь фотон будет проходить либо одним путем, либо другим.
Иными словами, картина интерференции проявляется, когда различить два маршрута невозможно. Но если установить в одном из ответвлений устройство, которое развернет поляризацию волны фотона в этом ответвлении на 90 градусов, два маршрута дадут нам различимые фотоны и картина интерференции пропадет. Это происходит, потому что теперь при выходе фотона мы знаем, «в какую сторону» направлена его поляризация. Задержка выбора в этом эксперименте означает, что нам даже не надо включать поляризационный вращатель, пока фотон не расщепился на два компонента (посредством расщепителя пучка или полу посеребренного зеркала). Если маршруты двух фотонов изначально поляризованы вертикально, то устройство развернет поляризацию компонента в верхнем ответвлении и сделает ее горизонтальной. Так что, увидев на выходе вертикально поляризованный фотон, мы будем знать, что он прошел сквозь нижнее ответвление. С другой стороны, если фотон поляризован горизонтально, он точно прошел сквозь поляризационный вращатель в верхнем ответвлении. Означает ли это, что фотон прошел только по одному маршруту? А если да, как он мог угадать, что вращатель включится после того, как фотон разделится надвое внутри интерферометра? В конце концов, не включи мы устройство, на выходе ведь возникла бы картина интерференции!
В 1982 году физики Марлан Скалли и Кай Дрюль предложили еще более удивительное развитие этой идеи. Они предположили, что даже при наличии во включенном состоянии такого маркера «направления», как поляризационный вращатель, информация о том, по какому именно маршруту прошел фотон, в итоге может быть стерта прямо перед выходом фотона из устройства. Они предложили поставить в том месте, где пути уже соединились, «квантовый стиратель» (скажем, второе полупосеребренное зеркало). Вполне разумно предположить, что, раз два маршрута различимы на основании разного направления поляризации, интерференции не произойдет. Однако похоже, что, избавившись от улик – то есть развернув поляризацию еще на 45 градусов, благодаря чему у нас пропадает возможность понять, каким путем прошел фотон, – стиратель может восстановить картину интерференции. Это кажется невероятным: фотон, похоже, знает не только то, включен ли вращатель в одном из ответвлений, но и то, что дальше работает квантовый стиратель, который устраняет информацию о направлении поляризации.
Несколько лет назад Юн-Го Ким с коллегами провел эксперимент по оригинальной схеме Скалли и Дрюля. Квантовый стиратель действительно восстановил картину интерференции!
Интерферометры показывают, что квантовые частицы действительно могут пребывать в суперпозиции в двух местах одновременно. Само собой, хотя я и не упоминал об этом, квантовые частицы могут пребывать и в суперпозициях других состояний, например вращаться в двух направлениях одновременно или обладать одновременно двумя и более различными энергиями или скоростями. Хотя нам легче сказать, что на самом деле в суперпозиции пребывает волновая функция, а не физическая частица, которую она описывает, что-то должно проходить по обоим ответвлениям интерферометра. Физики часто описывают эту ситуацию в противоречивых или небрежных терминах и говорят, что в интерферометре два пучка, которые интерферируют друг с другом. Но что это означает, когда мы описываем всего одну частицу? Правда в том, что никто не может удовлетворительно объяснить это нематематическим языком.
Нам известно лишь, что атом всегда описывается одной волновой функцией, а не двумя отдельными, и эта функция распространяется на оба ответвления. Именно здесь мы и заходим в тупик, представляя волновые функции классическими волнами. Если звуковая волна расщепляется и следует двумя разными маршрутами, которые в конце снова сходятся вместе, на выходе мы будем наблюдать эффект интерференции (незначительно изменяя частоту одной из волн, мы сможем услышать «пульсацию», так как две волны в итоге не будут совпадать по фазе). Однако звуковая волна в этом примере физически расщепляется надвое. Если два ответвления, по которым пойдут звуковые волны, приведут в различные места, звук услышит каждый из двух наблюдателей. В случае с атомом не стоит забывать, что только один наблюдатель увидит конкретный атом, если будет его искать. Строго говоря, мы утверждаем, что атом обладает единственной волновой функцией с двумя частями, которые описывают, как он следует по каждому из ответвлений, как бы далеко друг от друга они ни отстояли. Волновая функция распространяется на все пространство и принимает нулевое значение везде, кроме пространства внутри двух ответвлений. Следовательно, если установлено наблюдение, вся распространенная волновая функция схлопывается в единственную настоящую частицу, проходящую либо по одному из ответвлений, либо по другому.
Нелокальность
Все мы слышали не имеющие надежных свидетельств, но при этом интригующие заявления о том, что идентичные близнецы могут чувствовать эмоциональное состояние друг друга, даже если их разделяют большие расстояния. Утверждается, что близнецы каким-то образом связаны на психическом уровне, который науке еще только предстоит объяснить. Подобным образом пытаются объяснить и как собака чувствует, когда ее хозяин идет домой, и как должны работать черномагические куклы вуду. Стоит подчеркнуть, что я не утверждаю, будто эти примеры имеют хоть какое-то отношение к квантовой механике, и даже не верю, что они действительно происходят. Я упоминаю их исключительно в качестве дурацких примеров феномена под названием нелокальность. Интересно, что существование нелокальности в квантовом мире неопровержимо доказано: она проявляется посредством эффекта, именуемого запутанностью.
Представьте игральные кости. Какова вероятность, что выпадет дубль? Математические расчеты вполне очевидны. Для каждого значения одной кости существует один из шести шансов на то, что значение второй окажется таким же. Следовательно, вероятность двух дублей подряд составляет один к тридцати шести (так как 1/6 × 1/6 = 1/36). Конечно, это не означает, что, если вы бросите кости тридцать шесть раз, два дубля подряд выпадут только однажды; это означает лишь, что «в среднем» вероятность их выпадения именно такова[28]. Путем перемножения дробей мы получаем, что вероятность выбросить дубль десять раз подряд составляет примерно один к шестидесяти миллионам! А это значит, что, если бы каждый гражданин Британии бросил кости десять раз подряд, то статистически десять дублей выпало бы только у одного из них.
Что, если я дам вам кости, которые всегда падают дублями? Может, сначала выпадет дубль-шесть, затем дубль-два и так далее: число выпадает случайно, но при этом кости синхронизированы между собой. Вы по праву удивитесь и попытаетесь понять, в чем тут фокус. Возможно, в них встроен какой-то механизм, который контролирует, как именно они падают, и обе кости заранее запрограммированы приземляться в одной и той же последовательности номеров. Это можно легко проверить, бросив только одну кость, а вторую при этом зажав в кулаке. Теперь они рассинхронизируются и фокус не сработает.
Если же они продолжат выпадать дублями, несмотря на это, то объяснить это можно лишь тем, что они, видимо, каким-то образом восстанавливают синхронность перед каждым броском, обмениваясь дистанционным сигналом. Однако такой обмен сигналами требует важной оговорки: если кости находятся очень далеко друг от друга (скажем, одна из них на Земле, а другая – на Плутоне), их необходимо бросать в соответствии с составленным заранее расписанием, чтобы они не успели передать друг другу никакой сигнал.
Само собой, если бросить кости всего один раз и впоследствии подтвердить, что они упали одинаково, все это можно списать лишь на счастливый случай. Но повторяя процесс на Земле и на Плутоне снова и снова, скажем, раз в минуту, и обнаруживая, что кости всегда ложатся одинаково, мы придем к мысли о какой-то мгновенной связи. Естественно, мы можем убедиться, что они не синхронизируются перед броском, точно так же, как мы выясняли, что они не запрограммированы идентичным образом. Для этого мы произвольное число раз бросаем ту кость, которая находится на Земле, в последнюю минуту перед началом эксперимента.