Свет с Земли достигает Плутона за несколько часов, так что перед каждым броском кости не могут связываться друг с другом посредством какого бы то ни было известного нам физического сигнала. Если же они все равно ложатся одинаково, нам приходится признать, что они взаимодействуют на скорости, которая выше скорости света, а существование такой скорости запрещается всеми известными нам физическими законами.
В специальной теории относительности Эйнштейн доказал, что ни одно тело и ни один сигнал не может двигаться быстрее скорости света. Представьте его недоверие, когда выяснилось, что квантовые частицы действительно могут взаимодействовать друг с другом описанным образом[29].
Описанное выше поведение костей представляет собой пример того, что технически называется нелокальной связью. Под этим я понимаю, что происходящее здесь мгновенно влияет на происходящее где-то там. Без этого не обойтись, если кости снова и снова демонстрируют знание о том, как выпадет другая, хотя для передачи между ними какого-либо сигнала времени недостаточно. В классической механике это невозможно. Идея причины и следствия не только подразумевает, что причины всегда опережают следствия, но и подчиняется одному строгому условию. Одним из самых важных уроков, которые мы извлекли из теории относительности Эйнштейна, является то, что, если два события, одно из которых представляет собой причину другого, разделены некоторым расстоянием, они должны быть разделены и временем в связи с существованием барьера скорости света. Следовательно, если кому-то суждено пострадать в дорожной аварии, в соответствии с законами классической физики его идентичный близнец, находящийся в тысяче километров от него, не может (какое бы физическое сообщение ни было послано) узнать об этом быстрее, чем свет пройдет расстояние между ними – всего за несколько тысячных секунды.
Физики уже не сомневаются, что мгновенная коммуникация между далекими объектами, или нелокальность, является характерной чертой квантового мира и может быть связана с природой самой волновой функции. Большинство физиков не слишком переживает об этом, так как квантовая нелокальность не может использоваться для передачи сигнала на скорости выше скорости света – в нарушение теории относительности – из-за свойственной квантовому миру вероятностной природы.
Нам не нужно обращаться к гипотетическому примеру двух волшебных костей, чтобы продемонстрировать нелокальность в действии. Она характерна для уже знакомой нам расщепленной волновой функции в двух ответвлениях интерферометра. Если два ответвления устройства находятся на расстоянии нескольких световых лет друг от друга, мы все же можем включить детектор, после того как атом вошел в интерферометр, чтобы проверить, находится ли он в одном из ответвлений[30]. Если мы обнаружим атом, той части волновой функции, которая следует по другому ответвлению, тотчас придется принять нулевое значение, так как нет никакой вероятности, что атом выбрал этот маршрут.
Описанное выше свойство нелокального коллапса частей распространенных волновых функций при наблюдении за происходящим в других обстоятельствах называется просто – коллапс волновой функции.
Мне стоит заметить, что мой пример с костями существенно отличается от того, что на самом деле происходит в квантовой механике. Если бы кости действительно были связаны на квантовомеханическом уровне, то, бросая одну из них, как я и предлагал, чтобы исключить вероятность предварительной настройки, мы неизбежно будем изменять результат бросания другой.
Запутанность
Пока что в этой главе я разбирал две разные и довольно сложные идеи – суперпозицию и нелокальность. Первая утверждает, что квантовая частица может пребывать в комбинации двух и более состояний одновременно, а вторая гласит, что две квантовые частицы (или две отдельные части распространенной волновой функции одной частицы) могут каким-то образом оставаться в контакте, как бы далеко друг от друга они ни находились. Теперь я совмещу эти идеи, чтобы ввести третью квантовую концепцию.
В квантовой механике идея о том, что кости остаются в (нелокальном) контакте, как бы далеко друг от друга они ни находились, известна под названием запутанность. Хотя этот термин на заре квантовой механики использовал еще Шрёдингер, на первый план идея вышла лишь в последние годы.
Если две квантовых частицы взаимодействуют друг с другом, они могут стать взаимосвязанными – и тогда их судьбы переплетутся навсегда, как бы далеко друг от друга они ни улетели, пока одна из них не вступит во взаимодействие с измерительным прибором. Математически это проявляется следующим образом: частицы описываются единой волновой функцией, которая содержит в себе объединенную и общую информацию об их квантовых состояниях. Теперь одна из частиц может оказаться в суперпозиции, например встретив на пути экран с двумя прорезями. Если это происходит, вторая частица тоже волей-неволей оказывается в суперпозиции различных состояний, которые зависят от (а точнее, коррелируют с) каждой из двух альтернатив первой частицы. Теперь считается, что волновая функция описывает «запутанное состояние».
Самый известный пример этого был впервые описан в статье, которую Эйнштейн написал вместе с двумя коллегами, Борисом Подольским и Натаном Розеном. Само собой, в то время Эйнштейна гораздо больше волновала идея неопределенности, в соответствии с которой квантовая механика настаивает, что мы не можем одновременно знать все о квантовой частице. Однако мы увидим, что на самом деле внимание стоило обратить на нелокальный характер запутанности.
Эксперимент ЭПР
В 1935 году, вскоре после того как Эйнштейн переехал из Германии в Соединенные Штаты, он решил провести мысленный эксперимент, чтобы подчеркнуть, что в квантовой механике невозможно полагать, будто частица имеет определенную позицию, пока мы на нее не смотрим. Вместе с Подольским и Розеном он разработал сценарий, который получил название ЭПР-парадокса по инициалам троих авторов соответствующей статьи. Они взяли две частицы, такие как фотоны, которые одновременно испускаются одним источником и двигаются в разные стороны с одинаковой и противоположно направленной скоростью.
Мы уже знаем, что, если следить только за одним из фотонов, его необходимо считать распространенной волной, пока он не обнаружен. Нам приходится признать это, потому что мы понимаем, что если он наткнется на экран с двумя прорезями, то его дальнейший маршрут будет продиктован картиной интерференции его волновой функции. (Не забывайте, картину интерференции мы увидим, только когда сквозь прорези пройдет множество идентичных фотонов.) Каждый из них ведет себя, как волна, пока он не обнаружен, и как частица, когда он обнаружен. Эйнштейн с коллегами заметил, что интерес представляет другой фотон. Если мы решим измерить волнообразные свойства первого фотона, например длину его волны, это будет равносильно измерению его импульса[31]. А так как два фотона обладают одинаковой величиной импульса, но при этом двигаются в противоположных направлениях, мы также узнаем точную величину импульса второго фотона и сможем сопоставить ее с точной длиной волны. Это все равно что сказать, что он тоже ведет себя, как волна.
Однако – и здесь начинается самое интересное, – если бы мы вместо этого решили измерить точное положение первого фотона, то он предстал бы перед нами локализованной частицей. После этого мы смогли бы определить и точное положение второго фотона в этот момент, даже не наблюдая за ним, поскольку он прошел бы точно такое же расстояние от источника, двигаясь в противоположную сторону. Таким образом, напрашивается вывод, что атрибуты, которыми мы наделяем первый фотон, зависят от того, что мы решаем с ним сделать и как это измерить. В конце концов, мы знаем, что, определяя его положение, мы должны оказывать влияние на его волновую функцию, как это видно в фокусе с двумя прорезями. Но второй фотон мы при этом не затрагиваем. Мы могли бы специально подождать, пока они разлетятся на очень большое расстояние, чтобы точно никак не повлиять на второй фотон. Вывод состоит в том, что мы, в принципе, могли бы узнать точное положение второго фотона (как частицы) или точную величину его импульса (как волны) в любой момент времени, не наблюдая за ним. Неважно, что на практике это невозможно, поскольку нам в таком случае придется одновременно провести два разных измерения для первого фотона. Важно же то, что второй фотон должен был всегда обладать определенным положением и величиной импульса.