Литмир - Электронная Библиотека
A
A

Эти маркеры, как правило, передаются по наследству от одной клетки к другой. Примерно так же обстояли дела в Средневековье: сын графа становился графом, а ребенок, родившийся в семье крестьянина, со временем брался за плуг, как и его отец (даже если по своим качествам вполне мог быть графом). Такой порядок наследования, имеющий отношение не к генам как таковым, а только к тому, как и когда они используются, называется эпигенетикой. Мы еще многого в ней не понимаем, хотя и очень хотелось бы. Например, ткани сердца и мозга почти не регенерируются после повреждений, а вот кожа или печень восстанавливаются намного лучше. Если мы как следует разберемся в эпигенетике, то, пожалуй, сможем сделать из крестьянина графа. В этом случае нам, возможно, удастся вылечить больное сердце и устранить последствия инсульта.

Но вернемся к нашему С. elegans. Мы достаточно хорошо представляем себе, для чего предназначены его 959 клеток. Но в процессе развития червя образуется 1090 клеток. Что же происходит с остальными? Ответ на этот вопрос ввергает нас в печаль: они убивают сами себя. Чтобы правильно функционировать, организму порой приходится избавляться от ряда собственных клеток. В развитии человека этот процесс тоже играет важную роль. В частности, он заботится о том, чтобы у нас не вырост хвост, как у обезьяны. Клетки, из которых он может образоваться, присутствуют в эмбрионе, но затем целенаправленно уничтожаются.

Дикие гены - i_022.png
Еще одна загадка эпигенетики заключается в том, как наш образ жизни и опыт сказываются на программировании клеток. Можно ли передать эпигенетический опыт своим детям и внукам? Долгое время считалось, что эпигенетическое программирование полностью останавливается в самом начале развития эмбриона и каждый живой организм начинает свое существование с чистого листа. Однако за последние годы накопилось немало свидетельств того, что некоторые эпигенетические маркеры все же могут передаваться потомству и оказывать влияние на обмен веществ, склонность к онкологическим заболеваниям, возникновение депрессии и даже на такие сложные процессы, как обучение и память.

На более поздних стадиях жизни этот механизм не теряет своей значимости, например когда иммунная система уничтожает пораженные вирусом клетки, чтобы остановить размножение возбудителя болезни. Механизм запрограммированной смерти клеток называется апоптозом и действует с пугающей эффективностью. Все начинается с сигнала на самоуничтожение клетки. Он может поступить извне (например, от иммунной системы) или из самой поврежденной клетки, которая замечает, что у нее возникли какие-то проблемы. В подобных ситуациях в митохондриях, выполняющих роль электростанций в клетке, возникают «протечки реактора». В них образуются маленькие отверстия, и содержимое вытекает туда, где ему быть не положено. Это необычное происшествие будит спящие белки каспазы, которые до поры до времени мирно дремлют в клетке. Но стоит им только активизироваться, как проявляется их суровый нрав: они рвут клетку на части и тем самым активизируют все новые каспазы. Следующей в процесс активизации вступает дезоксирибонуклеаза, которая, проснувшись, начинает крошить в мелкие

клочья весь наследственный материал. Короче говоря, происходит цепная реакция разрушения и в кратчайшее время от клетки остаются только руины.

Сцена четвертая

Арчибальд сидит в тине и задумчиво что-то жует.

Голос из ниоткуда: Ну, Арчибальд, как жизнь? Тебе все еще нравится быть червем?

Арчибальд: Сойдет.

Голос из ниоткуда: Что-то не слышу особого восторга…

Арчибальд: Да уж. (Говорит нарочито писклявым голосом.) Здравствуйте, я Арчибальд, маленький червяк. (Переходит на нормальный голос.) Этим в наше время вряд ли кого-то можно поразить.

Голос из ниоткуда: Не могу не согласиться. Но что же делать?

Арчибальд (заговорщическим тоном): У меня есть секретный план: я превращусь в ВУММА! Ха-ха!

Голос из ниоткуда: В Вумма? А это еще кто такой?

Арчибальд: Я буду расти и расти, пока не стану стотонным мегамонстром. И меня будут звать ВУММ!!!

Голос из ниоткуда: Опять старые песни? Вспомни про физику.

Арчибальд: Физика, физика! Ничего нового сказать не можешь?

Голос из ниоткуда: Просто возникнут проблемы… Я тебя предупредил.

Такой маленький червячок, как С. elegans, представляет собой очень простое создание, без всяких фокусов и изысков. Это просто тонкая трубка из нескольких клеток. Спереди она поглощает пищу, которая переваривается внутри и выходит сзади. Питательные вещества распределяются напрямую между клетками, а кислород поступает через кожу. Есть еще простенькая репродуктивная система, пара мышц и горсточка нервных клеток, чтобы поддерживать организм в подвижном состоянии. Всю эту концепцию мать-природа явно разработала во время рекламной паузы.

Но что произойдет, если мы увеличим этот проект? Скажем, в сто раз. Пусть остается тот же экономный дизайн, только в сто раз длиннее и в сто раз толще. В этом случае наш С. elegans вырастет до десяти сантиметров в длину и будет напоминать обычного дождевого червя (то есть до ВУММА, о котором мечтает Арчибальд, еще очень далеко). Объем его тела (и масса) вырастут в миллион раз. И тут из-за угла снова выныривает физика (вместе со своей подружкой математикой) и портит всю картину, потому что площадь поверхности тела увеличится только в 10 тысяч раз. В этом вся проблема. Та же самая проблема, которая похоронила нашу затею с гигантской шаровидной клеткой…

Дело обстоит следующим образом: будучи микроскопически маленьким червячком, С. elegans имеет ровно столько клеток, чтобы им хватило кислорода, поступающего без всяких дополнительных приспособлений прямо через поверхность кожи. Но если он станет больше, то площадь, через которую кислород проникает внутрь тела, сильно сократится по сравнению с объемом, что не позволит удовлетворить потребности в кислороде. Кроме того, удлинится путь до клеток, находящихся в глубине тела. То же самое будет происходить и с питанием, поскольку площадь кишки, через которую оно усваивается, по мере роста будет относительно сокращаться. И на этом ВУММУ придет конец. Извини, Арчибальд.

Для роста существует только две возможности: либо научиться обходиться меньшим количеством пищи и кислорода на единицу веса тела (из-за чего снижается подвижность), либо вновь вернуться за чертежную доску для полной переработки генетического плана.

Насекомые используют очень экономную систему снабжения кислородом. У них есть трахеи – маленькие полые трубочки, идущие от панциря внутрь тела и увеличивающие таким образом площадь поверхности газообмена. За счет этого можно увеличить размеры тела, но и такая конструкция имеет свои пределы, поскольку добиться поступления свежего воздуха к клеткам, находящимся в самой глубине тела, довольно трудно. Уже на глубине 5 миллиметров начинает ощущаться нехватка кислорода. Поэтому насекомые редко бывают толстыми. Им для этого в прямом смысле слова «дыхалки не хватит».

Дикие гены - i_023.png
Вопрос о том, хватит ли живым организмам воздуха для дыхания, тесно связан с содержанием кислорода в атмосфере. В ходе истории этот показатель нередко менялся. Например, в каменноугольный период, начавшийся 359 миллионов лет назад и длившийся 60 миллионов лет, в воздухе содержалось примерно на 50 процентов больше кислорода, чем сейчас. Это создавало хорошие условия для появления крупных существ. И действительно, в то время можно было встретить гигантских насекомых, например Arthropleura – родственницу сороконожки, достигавшую одного метра в длину, и стрекозу Meganeura, имевшую размах крыльев 75 сантиметров.

25
{"b":"604387","o":1}