Затмения первого спутника Юпитера позволили открыть поступательное движение света, которое позже лучше узнали по явлению аберрации. Мне казалось, что поскольку теория этого спутника теперь улучшена, а число наблюдённых затмений стало очень большим, их новое рассмотрение должно было бы определить величину аберрации с ещё большей точностью, чем непосредственные наблюдения. По моей просьбе Деламбр любезно согласился выполнить эту работу и получил значение полной аберрации, равное 62.сс5 [20."2] — величину, в точности совпадающую с найденной Брадлеем из своих наблюдений. Доставляет удовлетворение видеть такое прекрасное согласие результатов, полученных совершенно различными методами. Из этого согласия следует, что скорость света одинакова во всем пространстве, охваченном земной орбитой. В самом деле, скорость света, даваемая аберрацией, это — та, которая имеет место на окружности земной орбиты и, складываясь с движением Земли, производит это явление. Скорость света, выведенная по затмениям спутников Юпитера, определяется временем, затраченным светом на пересечение земной орбиты. Так как эти две скорости оказываются равными, то скорости света одинаковы по всему диаметру земной орбиты. Из данных о затмениях спутников Юпитера даже следует, что она неизменна и в пространстве, заключённом в орбите Юпитера, так как вследствие эксцентричности этой орбиты вариации её радиусов-векторов заметно отражаются на затмениях спутников, а анализ этих затмений показал, что этот эффект соответствует неизменной скорости света.
Если свет испускается светящимися телами, то равенство скорости их лучей требует, чтобы они излучались каждым телом с одинаковой силой и чтобы их движение не задерживалось заметно притяжением, испытываемым ими со стороны посторонних тел. Если считать, что свет представляет собой вибрации упругого флюида, неизменность его скорости требует, чтобы плотность этого флюида во всем пространстве планетной системы была пропорциональна его упругости. Но исключительная простота, с которой объясняется аберрация небесных светил и явление преломления света при переходе из одной среды в другую, если считать свет излучением светящихся тел, делает эту гипотезу, по крайней мере, очень вероятной.
Плоскость орбиты второго спутника движется равномерно с постоянным наклоном к неподвижной плоскости, проходящей неизменно между экватором и орбитой Юпитера, через линию их взаимного пересечения с наклоном к экватору, составляющим 201сс [65"]. Орбита спутника наклонена к его неподвижной плоскости на 5152сс [1669"], а её узлы движутся по этой плоскости попятным тропическим движением с периодом в 29.9142 лет. Этот период послужил мне одной из исходных данных для определения масс спутников. Наблюдения не позволили определить собственный эксцентриситет орбиты этого спутника, но он немного влияет на эксцентриситеты третьего и четвёртого спутников. Два главных неравенства второго спутника зависят от действия первого и третьего. Отношение, существующее между долготами первых трёх спутников, навсегда объединяет эти два неравенства в одно, причём период его в возвращении затмений равен 437.659 суток — величине, которая явилась третьей величиной, использованной мною для определения масс спутников.
Плоскость орбиты третьего спутника движется равномерно с неизменным наклоном к неподвижной плоскости, проходящей постоянно между экватором и орбитой Юпитера, через линию их взаимного пересечения и с наклоном к экватору, равным 931сс [302"]. Орбита спутника наклонена на 2284сс [740"] к его неподвижной плоскости, и её узлы перемещаются по ней попятным тропическим движением с периодом 141.739 года. Астрономы предполагали, что орбиты трёх первых спутников Юпитера движутся в самой плоскости экватора Юпитера. Но из затмений третьего спутника они находили немного меньшее наклонение орбиты планеты к этому экватору, чем из затмений двух других. Эта разница, причина которой была им неизвестна, происходит оттого, что орбиты спутников движутся с постоянным наклоном не к этому экватору, а к другим плоскостям, которые к нему наклонены тем более, чем дальше спутник отстоит от планеты. Как мы видели в предыдущей главе, Луна являет нам подобный же результат. Отсюда происходит неравенство лунного движения по широте, величина которого определяет сжатие Земли, может быть, точнее, чем градусные измерения по меридиану.
Эксцентриситет орбиты третьего спутника имеет особые аномалии, причину которых я узнал благодаря теории. Они зависят от двух различных уравнений центра. Одно, присущее этой орбите, относится к перийовию, годичное звёздное движение которого равно 29 010сс [9400"]. Другое, которое можно рассматривать как вытекающее из уравнения центра четвёртого спутника, относится к перийовию этого последнего тела. Оно также представляло одну из величин, послуживших мне для определения масс. Сочетаясь, эти два уравнения дают одно переменное уравнение центра, относящееся к перийовию с неравномерным движением. Они совпадали и складывались в 1682 г., и тогда их сумма возросла до 2458сс [796"]. В 1777 г. они вычитались одно из другого, и их разность составляла лишь 949сс [307"]. Варгентин попробовал представить эти изменения с помощью двух уравнений центра. Но он не отнёс одно из них к перийовию четвёртого спутника, и наблюдения заставили его отказаться от, своей гипотезы; тогда он прибег к гипотезе одного переменного уравнения центра, изменения которого он определил из наблюдений. Это привело его почти к тем же результатам, на которые мы указывали.
Наконец, плоскость орбиты четвёртого спутника движется равномерно, с постоянным наклоном к неподвижной плоскости, которая наклонена к экватору Юпитера на 4457сс [1444"] и которая проходит через линию узлов этого экватора между ним и орбитой планеты. Наклон орбиты спутника к его неподвижной плоскости равен 2772сс [898"], и её узлы в этой плоскости имеют попятное тропическое движение с периодом в 531 год. В силу этого движения наклон орбиты четвёртого спутника к орбите Юпитера непрерывно изменяется. Дойдя до своего минимума вблизи середины прошлого века, он был около 2.g7 [2.°4] и почти постоянен с 1680 по 1760 гг. В этом интервале узлы орбиты спутника на орбите Юпитера имели прямое годичное движение около 8c [4.'3]. За это обстоятельство, выявленное наблюдениями, ухватились астрономы и долго с успехом использовали его для таблиц этого спутника. Оно является следствием теории, которая даёт наклонность и движение узлов, весьма близкие к найденным астрономами из анализа наблюдений затмений. Но в последние годы наклонность орбиты получила очень заметное увеличение, закон которого было бы трудно найти, не прибегая к математическому анализу. Любопытно видеть, как из аналитических формул появляются странные явления, указанные наблюдениями, но которые, являясь результатом нескольких простых неравенств, слишком сложны, чтобы астрономы могли открыть их законы. Эксцентриситет орбиты четвёртого спутника гораздо больше, чем у других орбит. Его перийовий имеет прямое годичное движение в 7959сс [2579"]. Это — пятая величина, использованная мной для вычисления масс.
Каждая орбита немного зависит от движения других. Постоянные плоскости, к которым мы их отнесли, не совсем неподвижны. Они очень медленно движутся вместе с экватором и орбитой Юпитера, всегда проходя через взаимное пересечение этих плоскостей и сохраняя по отношению к экватору Юпитера наклонности, хотя и изменяющиеся, но находящиеся в постоянном отношении между собой и с наклоном орбиты планеты к экватору.
Таковы главные результаты сравнения теории спутников Юпитера с многочисленными наблюдениями их затмений. Наблюдения появления и исчезновения теней спутников на диске Юпитера пролили бы много света на некоторые элементы этой теории. До сих пор астрономы пренебрегали наблюдениями такого рода, но, как мне кажется, они должны привлечь их внимание, так как, по-видимому, внутренние контакты теней должны определять момент соединения ещё точнее, чем затмения. Теория спутников в настоящее время настолько продвинулась вперёд, что недостающее ей может быть определено только очень точными наблюдениями. Поэтому становится необходимым испытать новые методы наблюдений или, но крайней мере, убедиться, что применяемые теперь заслуживают предпочтения.