Литмир - Электронная Библиотека
Содержание  
A
A

С точки зрения жителя Западной Европы, привыкшего к полноценному питанию, пренатальное программирование может показаться абсолютно неадаптивным. Тем не менее не исключено, что понижение количества нефронов возникло как адаптация к периодам голода, позволяющая удержать в крови каждую драгоценную крупинку питательных веществ и солей. Это мнение подкрепляют два хорошо изученных случая массового недостаточного питания матерей во время Второй мировой войны. (Правда, в обоих случаях изучали не почечную недостаточность, а другую болезнь, связанную с пренатальным программированием, а именно сахарный диабет II типа.) В случае голландской «голодной зимы» 1944 г. острая нехватка продуктов питания, продолжавшаяся несколько месяцев, сменилась относительным изобилием после освобождения Нидерландов. У детей, рожденных от голодавших матерей, впоследствии наблюдался высокий уровень болезней, связанных с пренатальным программированием, прежде всего диабета II типа. Во время блокады Ленинграда голодавшие жители не получили такого внезапного облегчения, и дети питались скудно еще долгое время после рождения. Болезней, связанных с пренатальным программированием, среди них отмечено меньше. Такая интерпретация данных не бесспорна (определенную роль могли сыграть, например, генетические различия между популяциями), но, по крайней мере, некоторые ученые склонны делать вывод о том, что пренатальное программирование плода может играть положительную роль в условиях недостатка пищи. Опасность возникает только тогда, когда «настроенный» на голод ребенок вдруг начинает получать обильное питание.[181] Правильный ответ на вопрос, так ли это, имел бы большое практическое значение. Он позволил бы дать четкие клинические предписания о том, нужно ли кормить новорожденных с низкой массой тела молочными препаратами с высокой энергетической ценностью, чтобы стимулировать быстрое восстановление веса до нормального уровня.

Каждый конкретный орган тела имеет уникальное строение и специфические особенности развития. Тем не менее ключевой вывод из рассказа о развитии почки – то, что оно происходит за счет гибкой межклеточной коммуникации, а не строго запрограммированной последовательности событий, – в равной мере справедлив для всех органов.

Глава 11

Не покладая рук (и ног)

Твоя рука свежа, легка,
Как дуновенье ветерка.
Уильям Вордсворт (пер. И. Меламеда)

Наличие конечностей – обязательное условие того образа жизни, который ведут млекопитающие. Конечности служат всем млекопитающим для движения и защиты, а людям и их ближайшим сородичам также для сложных манипуляций с предметами. В ходе эволюции позвоночные приобрели длинные конечности уже после того, как у них сложились основные анатомические черты туловища и головы. Поэтому и у эмбрионов конечности появляются только после формирования основного плана строения. Первые намеки на появление конечностей заметны у человеческого эмбриона примерно через двадцать четыре дня после зачатия, то есть тогда, когда уже основные структуры уже сформировались и функционирует примитивная система циркуляции.

Развитие конечностей начинается с появления двух небольших бугорков по бокам тела эмбриона немного выше уровня сердца. Это будущие руки. В скором времени появляются и бугорки в нижней части туловища – они дадут начало ногам. Появление бугорков связано с энергичным размножением клеток, залегающих непосредственно под эктодермой (напомню, что эктодерма покрывает зародыша снаружи). Дело не в том, что в этих областях клетки делятся более интенсивно, а в том, что скорость их размножения остается прежней, в то время как рост зародыша в целом замедляется. В результате пролиферация клеток в развивающихся конечностях происходит интенсивнее, чем в боковых частях тела. Клетки «принимают решение» о сохранении высоких темпов пролиферации не самостоятельно, а под действием сигналов мезодермы туловища. Клетки мезодермы на тех уровнях туловища, где в дальнейшем появятся руки и ноги, запускают экспрессию нового набора генов[182],[183] (возможно, руководствуясь HOX-кодом; см. главу 6) и, в частности, начинают производить сигнальные белки семейства WNT. Эти белки активируют производство сигнальных молекул семейства FGF,[184] а они, в свою очередь, запускают образование зачатков конечностей. Способность FGF вызывать формирование конечностей была продемонстрирована в весьма показательных экспериментах: кусочки геля, пропитанные этими белками, имплантировали куриному эмбриону между участками формирования крыла и ноги. Как вариант, в ткани куриного эмбриона вводили вирусы, подвергнутые генетической инженерии и кодирующие FGF. Клетки, расположенные над искусственными источниками FGF, формировали дополнительные выросты, из которых получились дополнительные конечности.[185],[186] Такой же эффект наблюдается при экспериментальной индукции производства сигнальных молекул WNT в этих местах.[187] С другой стороны, если блокировать активность WNT или FGF, конечности не образуются даже там, где они должны быть.

После того как эти сигналы запускают развитие конечностей, тонкий слой эктодермы в области их формирования утолщается, и залегающие под ней клетки мезодермы начинают размножаться. Эта пролиферация «выталкивает» наружу почку конечности, постепенно принимающую лопатообразную форму с эктодермальным утолщением на конце (рис. 51).

Клетки, залегающие в толще почки конечности, могут давать начало разным тканям, например костям и сухожилиям. Понятно, что клетки не должны случайным образом решать свою судьбу, иначе получится не конечность, а сплошное безобразие. Они должны «принимать решение» в соответствии со своим положением. Клетки, которые в конечном итоге окажутся в районе кисти, должны сформировать мелкие косточки пальцев, а клетки в районе плеча – крупную плечевую кость. Клетки, расположенные между ними, образуют локтевой сустав, или кости предплечья, или, если они находятся вне участков формирования костей, сухожилия и мышцы. Таким образом, развивающейся конечности требуется надежная система, заставляющая клетки образовывать определенную ткань в зависимости от их расположения. Насколько мы знаем (знаем мы, правда, далеко не все), клетки конечности способны определять концентрацию разных сигнальных молекул, поступающих из разных участков конечности, примерно так, как это делают клетки сомитов (глава 7). Кроме того, их судьбу, как и судьбу клеток сомитов, возможно, в определенной мере контролируют «молекулярные часы».

Анатомию конечности можно описать с помощью системы координат трех осей: первая идет от плеча до кончиков пальцев, вторая – от большого пальца до мизинца, третья – через ладонь и тыльную сторону кисти. Хотя системы, задающие в ходе развития ориентацию этих осей, не полностью независимы, нам будет проще рассматривать их по одной, упоминая взаимодействия между ними по мере их появления.

Онтогенез. От клетки до человека - _51.png

Рис. 51. Формирование почки конечности (в данном случае правой руки) на боку эмбриона. На участке, где должна сформироваться конечность, утолщается эктодерма, а в результате деления залегающих под ней клеток мезодермы появляется бугорок – почка конечности, которая затем приобретает лопатообразную форму

В настоящее время (точнее говоря, на момент написания этой книги) вопрос о том, как определяется положение структур конечности на оси, идущей от плеча к пальцам, является предметом бурных научных споров. Есть несколько гипотез, и у каждой есть свои приверженцы. Убедительно доказать или опровергнуть какую-либо из них пока не удалось. С одной стороны, это досадно, так как я не могу предложить вам однозначный ответ. С другой стороны, существующие разногласия предоставляют мне хорошую возможность продемонстрировать вам процесс познания в биологической науке.

вернуться

181

Gluckman PD, Hanson MA, Cooper C, Tornburg KL. Efect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008; 359:61–73.

вернуться

182

King M, Arnold JS, Shanske A, Morrow BE. T-genes and limb bud development. Am J Med Genet A. 2006; 140:1407–13.

вернуться

183

Takeuchi JK, Koshiba-Takeuchi K, Suzuki T, Kamimura M, Ogura K, Ogura T. Tbx5 and Tbx4 trigger limb initiation through activation of the Wnt/Fgf signaling cascade. Development. 2003; 130:2729–39.

вернуться

184

Kawakami Y, Capdevila J, Büscher D, Itoh T, Rodríguez Esteban C, Izpisúa Belmonte JC. WNT signals control FGF-dependent limb initiation and AER induction in the chick embryo. Cell. 2001; 104:891–900.

вернуться

185

Cohn MJ, Izpisúa-Belmonte JC, Abud H, Heath JK, Tickle C. Fibroblast growth factors induce additional limb development from the fank of chick embryos. Cell. 1995; 80:739–46.

вернуться

186

Ohuchi H, Nakagawa T, Yamauchi M, Ohata T, Yoshioka H, Kuwana T, Mima T, Mikawa T, Nohno T, Noji S. An additional limb can be induced from the fank of the chick embryo by FGF4. Biochem Biophys Res Commun. 1995; 209:809–16.

вернуться

187

Kawakami Y, Capdevila J, Büscher D, Itoh T, Rodríguez Esteban C, Izpisúa Belmonte JC. WNT signals control FGF-dependent limb initiation and AER induction in the chick embryo. Cell. 2001; 104:891–900.

35
{"b":"554801","o":1}