Литмир - Электронная Библиотека
Содержание  
A
A

Вероятно, клетки могут не только меняться местами, но и активно мигрировать в направлении центральной линии. Оба процесса осуществляются благодаря способности клеток воспринимать сигналы (большинство из них еще только предстоит расшифровать, хотя кое-какие мы уже знаем[74]), которые указывают им направление «голова – хвост» и «лево – право». Этот внутренний «компас»[75] позволяет клеткам ориентироваться в плоскости клеточного пласта. Благодаря работе этого компаса происходит так называемое конвергентное вытяжение эмбриона вдоль оси «голова – хвост»: клетки левой и правой сторон эмбриона конвергентно перемещаются к его центральной линии и выстраиваются вдоль нее. В результате тело эмбриона приобретает удлиненную форму, характерную для взрослого организма. В частности, широкий и короткий участок, расположенный вдоль центральной линии спины, становится длинным и тонким. В том месте, где образуется голова, он, правда, остается чуть более широким, так что тело эмбриона слегка напоминает по форме замочную скважину.

После стабилизации общей формы тела начинается активное развитие нервной системы. Нотохорд, который уже проходит вдоль центральной линии тела (глава 4), секретирует сигнальные белки. Эктодерма в радиусе действия этих сигналов (на практике это означает полоску эктодермы, лежащую непосредственно над нотохордом) готовится к превращению в нервную ткань. В клетках этой полоски включаются ранее неактивные гены; клетки немного утолщаются, готовясь к последующим изменениям формы. Образуется нервная пластинка. Ее клетки немного отличаются друг от друга в зависимости от положения: клетки, находящиеся непосредственно над нотохордом, образуют центральную полоску, а те, что находятся на границе с обыкновенной эктодермой, образуют две краевые полоски. На этом этапе полоски не отличаются внешне, но в дальнейшем они дадут начало соответственно центральной части и краям глубокой борозды (рис. 17).

Клетки нервной пластинки связаны друг с другом тем же типом межклеточных контактов, что и клетки эмбриона на ранней стадии развития, когда они образовывали компактную клеточную массу (глава 3). Внутри каждой клетки эти контакты соединяются друг с другом белковыми микрофиламентами, образующими непрерывную механическую сеть (рис. 18). Важно отметить, что эта сеть в основном залегает не в середине клеточного пласта, а вблизи обращенной наружу поверхности клеток.

Наличие этой сети означает, что никакая клетка не может изменить форму, не оказав при этом воздействия на окружающих ее соседей. Это, в свою очередь, означает, что действия отдельных клеток могут привести к изгибанию эпителиального пласта. Клетки центральной полоски производят большое количество белка Shroom, который взаимодействует с системой микрофиламентов, перестраивая ее так, чтобы межклеточные контакты подтягивались ближе друг к другу.[76] Если смотреть сбоку, профиль клеток центральной полоски изменяется от прямоугольного до клиновидного (рис. 19, а—б). Однако клетки по-прежнему крепко соединены межклеточными контактами, а значит, когда отдельные клетки приобретают клиновидную форму, промежутков между ними не образуется. Это приводит к скручиванию всего клеточного пласта[77] (см. рис. 19, б). В результате этого скручивания центральная линия эктодермы, расположенная вдоль спинной стороны эмбриона, прогибается внутрь, и образуется глубокая бороздка (рис. 19, в). Клетки краевых полосок, напротив, расширяют свои апикальные стороны и сужают базальные, (механизм этого процесса пока непонятен). Такое изменение формы клеток тоже приводит к изгибанию пласта, но уже в другую сторону – вместо борозды образуется валик. Оба процесса приводят к одному и тому же результату: область эктодермы, которая пойдет на формирование нервной ткани, прогибается внутрь и погружается вглубь эмбриона, а края этой области сдвигаются ближе друг к другу.

Онтогенез. От клетки до человека - _17.png

Рис. 17. Три полоски эктодермы, образующиеся на дорсальной (спинной) поверхности эмбриона, дают начало глубокой борозде

Онтогенез. От клетки до человека - _18.png

Рис. 18. Система микрофиламентов и межклеточных контактов образует единую механическую сеть, которая проходит через всю эктодерму, включая и нервную пластинку. Обратите внимание, что эта сеть находится ближе к апикальной (внешней) стороне клеток

Онтогенез. От клетки до человека - _19.png

Рис. 19. Этапы формирования нервной трубки. На всех рисунках показаны поперечные срезы эмбриона. Клетки с прямоугольным контуром (а) приобретают клиновидную форму, что приводит к образованию борозды (б—в), края которой в конечном итоге смыкаются, преобразуя борозду в трубку (г)

Образование центральной борозды – хороший пример масштабной перестройки тканей за счет локальных сил. Если вырезать из эмбриона кусочек дорсальной эктодермы, в которой и должен протекать этот процесс, и поместить его в чашку Петри, характерная борозда появится тогда, когда она и должна появиться у эмбриона. Это доказывает, что после того, как процесс запущен, он регулируется вовлеченными в него клетками, то есть локально, и контроль со стороны других частей эмбриона уже не нужен. На этом этапе, однако, развитие замедляется, потому что следующий этап зависит от активности эктодермы на краях центральной полоски, которая не будет сама по себе формировать нервную ткань. Ее клетки делают три важные вещи: они уплощаются, благодаря чему становятся короче, но шире; они размножаются; и они по-прежнему конвергируют (перемещаются) к срединной линии эмбриона, внося вклад в уже описанные процессы сужения и удлинения.[78] Все эти активности клеток способствуют созданию бокового давления, которое подталкивает края борозды друг к другу до тех пор, пока они не встретятся (рис. 19, в—г).

Когда это происходит, края двух сторон борозды смыкаются, и она превращается в трубку, пока еще соединенную с эктодермой. По мере смыкания краев борозды соседние области тоже сходятся, и борозда замыкается, как застежка-молния. Сразу после образования нервной трубки клетки перестраиваются так, что она полностью отделяется от окружающей ее эктодермы, не нарушая при этом целостности эмбриона. Подробности этого процесса до сих пор неизвестны, но, возможно, он происходит за счет механизма, основанного на клеточной адгезии. Он заключается в следующем. Адгезия между клетками нервной трубки, основанная на действии таких белков, как N-кадгерин, возможно, значительно сильнее, чем адгезия между этими клетками и клетками окружающей эктодермы. Поэтому клетки нервной трубки на границе с обычной эктодермой стараются установить как можно более прочный контакт с подобными себе клетками, а этого можно добиться только за счет ослабления контакта с окружающей эктодермой. После того как клетки эктодермы с противоположных сторон нервной трубки соприкоснулись, адгезия между ними, основанная на действии молекулы под названием Е-кадгерин, становится сильнее, чем адгезия между ними и клетками нервной трубки. Поэтому клетки эктодермы сильнее прилегают друг к другу, а контакт с клетками нервной трубки ослабляется. Такое объединение клеток по принципу «одного поля ягоды» не требует каких-либо особых механизмов, кроме простой биофизики клеточной адгезии. В конце концов две ткани просто теряют контакт друг с другом, и эктодерма спинной стороны эмбриона становится непрерывным слоем. Впоследствии он даст начало наружному слою кожи плода. Обращаю ваше внимание на то, что это гипотетический механизм. Пока что нет уверенности даже в том, что сила адгезионных взаимодействий между сходными клетками, вовлеченными в этот процесс, выше, чем между различными.

вернуться

74

Wang J, Hamblet NS, Mark S, Dickinson ME, Brinkman BC, Segil N, Fraser SE, Chen P, Wallingford JB, Wynshaw-Boris A. Dishevelled genes mediate a conserved mammalian PCP pathway to regulate convergent extension during neurulation. Development. 2006; 133:767–78.

вернуться

75

Компасом клеткам служит так называемая планарная полярность клеток (planar cell polarity – PCP). Эпителиальная клетка имеет две полярности. Первая – апико-базальная (апикальная сторона клетки – наружная сторона пласта, базальная – внутренняя), а вторая – PCP – полярность в плоскости эпителиального пласта. Через каждую эпителиальную клетку и через весь эпителиальный пласт можно провести ось, направление которой совпадет с передне-задней осью эмбриона. Некоторые компоненты клетки расположены асимметрично относительно этой оси. Благодаря PCP эпителиальные клетки могут перемещаться в плоскости пласта неслучайным образом. – Примеч. науч. ред.

вернуться

76

Lee CC, Liu KL, Tsang YM, Chen SJ, Liu HM. Fetus in fetu in an adult: diagnosis by computed tomography imaging. J Formos Med Assoc. 2005; 104:203–5.

вернуться

77

Kinoshita N, Sasai N, Misaki K, Yonemura S. Apical accumulation of Rho in the neural plate is important for neural plate cell shape change and neural tube formation. Mol Biol Cell. 2008; 19:2289–99.

вернуться

78

Saucedo R, Smith JL, Schoenwolf GC Role of nonrandomly oriented cell division in shaping and bending of the neural plate, J. Comp Neurol 1997; 381:473–88.

15
{"b":"554801","o":1}