Литмир - Электронная Библиотека
Содержание  
A
A

НИКЕЛЬ И МАЛАЯ ЭНЕРГЕТИКА. Собственно говоря, «малая энергетика» не такая уж малая. Если сложить мощности всех химических источников тока, установленных в самолетах и транзисторных приемниках, автомобилях и электробритвах, тракторах и карманных фонариках, электрокарах и искусственных спутниках, то, наверное, полученная сумма будет соизмерима с многозначными числами, которыми выражается мощность крупнейших ГЭС и ГРЭС. Роль никеля в конструкциях малой энергетики ведущая.

Самые распространенные «минусы» в химических источниках тока — это цинк, кадмий, железо, а самые распространенные «плюсы» — окислы серебра, свинца, марганца, никеля. Соединения никеля используются в производстве щелочных аккумуляторов. Кстати, железоникелевый аккумулятор изобретен в 1900 г. Томасом Алвой Эдисоном.

Положительные электроды на основе окислов никеля имеют достаточно большой положительный заряд, они стойки в электролите, хорошо обрабатываются, сравнительно недороги, служат долго и не требуют особого ухода. Этот комплекс свойств и сделал никелевые электроды самыми распространенными. У некоторых батарей, в частности цинково-серебряных, удельные характеристики лучше, чем у железоникелевых или кадмийникелевых. Но никель намного дешевле серебра, к тому же дорогие батареи служат намного меньше.

Окисноникелевые электроды для щелочных аккумуляторов делают из пасты, в состав которой входят гидрат окиси никеля и графитовый порошок. Иногда функции токопроводящей добавки вместо графита выполняют тонкие никелевые лепестки, равномерно распределенные в гидроокиси никеля. Эту активную массу набивают в различные по конструкции токопроводящие пластины.

В последние годы получил распространение другой способ производства никелевых электродов. Пластины прессуют из очень тонкого порошка окислов никеля с необходимыми добавками. Вторая стадия производства — спекание массы в атмосфере водорода. Этим способом получают пористые электроды с очень развитой поверхностью, а чем больше поверхность, тем больше ток. Аккумуляторы с электродами, изготовленными этим методом, мощнее, надежнее, легче, но и дороже. Поэтому их применяют в наиболее ответственных объектах — радиоэлектронных схемах, источниках тока в космических аппаратах и т. д.

Никелевые электроды, изготовленные из тончайших порошков, используются и в топливных элементах. Здесь особое значение приобретают каталитические свойства никеля и его соединений. Никель — прекрасный катализатор сложных процессов, протекающих в этих источниках тока. Кстати, в топливных элементах никель и его соединения могут пойти на изготовление и «плюса» и «минуса». Разница лишь в добавках.

ТРИ ЦИТАТЫ.

«Это металлическое вещество не нашло каких-либо применений, и главное внимание химиков, которые его исследовали, было направлено на получение его в чистом состоянии, что, однако, до сих пор не достигнуто».

У. Hикольсон. Основания химии. Лондон. 1796.

«Если открыты будут богатые месторождения никеля, то этому металлу предстоит обширное практическое применение как в чистом состоянии, так и в форме сплавов».

Д.И. Менделеев. Основы химии. СПб., 1869.

«Среди главнейших в современной технике металлов никелю принадлежит одно из первых мест».

И.И. Kopнилов. Никель и его сплавы. М., 1958.

Медь

Популярная библиотека химических элементов. Книга первая. Водород — палладий - i_108.png

Элемент № 29. Жизненно важный элемент. Главный металл электротехники. Один из самых важных, самых древних и самых популярных металлов. Популярных не только в среде инженеров — конструкторов, электриков и машиностроителей, но и у людей гуманитарных профессий — историков, скульпторов, литераторов.

Прочность

Тот, кто носит медный щит, тот имеет медный лоб.

Л. Соловьев. Похождения Насреддина

С помощью этой немудреной присказки хитрый Ходжа разделался с прохвостом-ростовщиком, а сам избежал расправы меднолобых стражников. Но допустим, что Ходжа Насреддин хорошо знал свойства меди и свою «дразнилку» адресовал не меднолобым стражникам, а оружейникам. Иначе говоря, имело ли смысл из такого металла, как медь, делать щиты?

В любом техническом справочнике находим прочностные характеристики литой меди: предел прочности 17 кг/мм2 (при нормальной температуре), предел текучести* (при 500°С — жесткие, но вполне реальные условия работы многих изделий из меди) 2,2 кг/мм2. Много это или мало? Предел текучести обычной стали в этих условиях достигает 100 кг/мм2. Противодействие ударным нагрузкам (а именно такие нагрузки в основном достаются щитам) у меди также меньше, чем у многих других металлов и сплавов. Не отличается она и особой твердостью: медь, правда, тверже, чем золото и серебро, но в полтора раза мягче железа (соответственно 3,0 и 4,5 по 10-балльной шкале).

У вас не создалось впечатления, что эти цифры, обрети они вдруг дар речи, повторили бы вслед за Ходжой Haсреддином: «Тот, кто носит медный щит, тот имеет…»? Но не поддадимся «объективности» голых цифр. Ведь все они взяты из технической литературы XX столетия, а время медных щитов, как и бронзовых пушек, миновало достаточно давно.

Оружейников древности и даже средневековья прочностные характеристики меди вполне устраивали. Во-первых, нагрузка, которую испытывал щит при ударе копьем или секирой, куда меньше пробивной силы винтовочного выстрела. Во-вторых, у древних металлургов не было другого материала, прочного, как медь, и доступного, как медь. НЕ случайно античный бог-кузнец Гефест выковал непобедимому Ахиллесу медный щит. Именно медный!

Как конструкционный материал медь широко используется и сейчас, но главную ценность приобрели уже не механические, а тепловые и электрические характеристики меди. По способности проводить тепло и электричество медь уступает только драгоценному серебру. У алюминия электросопротивление почти вдвое больше, чем у меди; а у железа — почти в шесть раз.

Но из меди делают не только проволоку и токопроводящие детали аппаратуры. Ее широко используют в химическом машиностроении при изготовлении вакуум-аппаратов, перегонных котлов, холодильников, змеевиков. Из меди и ее сплавов, как и прежде, делают орудия труда и инструмент. В любом цехе, где работают с взрывоопасными или легковоспламеняющимися веществами, можно встретить молотки, стамески, отвертки из медных сплавов. Конечно, стальной инструмент прочнее, долговечнее, дешевле, но он «искрит». Поэтому предпочитают чаще менять инструмент, больше тратить на его приобретение, но уменьшить пожаро- и взрывоопасность.

Гильзы патронов и артиллерийских снарядов обычно желтого цвета. Они сделаны из латуни — сплава меди с цинком. (В качестве легирующих добавок в латунь могут входить алюминий, железо, свинец, марганец и другие элементы). Почему конструкторы предпочли латунь более дешевым черным сплавам и легкому алюминию? Латунь хорошо обрабатывается давлением и обладает высокой вязкостью. Отсюда — хорошая сопротивляемость ударным нагрузкам, создаваемым пороховыми газами.

Большинство артиллерийских латунных гильз используется неоднократно. Не знаю, как сейчас, а в годы войны в любом артиллерийском дивизионе был человек (обычно офицер), ответственный за своевременный сбор стреляных гильз и отправку их на перезарядку.

В гильзовой латуни 68% меди.

Высокая стойкость против разъедающего действия соленой воды характерна для так называемых морских латуней. Это латуни с добавкой олова.

Знаменитый коррозионно-стойкий сплав томпак — это тоже латунь, но доля меди в нем больше, чем в любом другом сплаве этой группы — от 88 до 97%.

Еще одно важное свойство латуни: она, как правило, дешевле бронзы — другой важнейшей группы сплавов на основе меди.

94
{"b":"545874","o":1}