Литмир - Электронная Библиотека
Содержание  
A
A

История селена, рассказанная его первооткрывателем

История открытия элемента № 34 небогата событиями. Диспутов и столкновений это открытие не вызвало, и не мудрено: селен открыт в 1817 г. авторитетнейшим химиком своего времени Йенсом Якобом Берцелиусом. Сохранился рассказ самого Берцелиуса о том, как произошло это открытие.

«Я исследовал в содружестве с Готлибом Ганом метод, который применяют для производства серной кислоты в Грипсхольме. Мы обнаружили в серной кислоте осадок, частью красный, частью светло-коричневый. Этот осадок, опробованный с помощью паяльной трубки, издавал слабый редечный запах и образовывал свинцовый королек. Согласно Клапроту, такой запах служит указанием на присутствие теллура. Ган заметил при этом, что на руднике в Фалюне, где собирается сера, необходимая для производства кислоты, также ощущается подобный запах, указывающий на присутствие теллура. Любопытство, вызванное надеждой обнаружить в этом коричневом осадке новый редкий металл, заставило меня исследовать осадок. Приняв намерение отделить теллур, я не смог, однако, открыть в осадке никакого теллура. Тогда я собрал все, что образовалось при получении серной кислоты путем сжигания фалюнской серы за несколько месяцев, и подверг полученный в большом количестве осадок обстоятельному исследованию. Я нашел, что масса (то есть осадок) содержит до сих пор неизвестный металл, очень похожий по своим свойствам на теллур. В соответствии с этой аналогией я назвал новое тело селеном (Selenium) от греческого σεληνη (луна), так как теллур назван по имени Tellus — нашей планеты».

Как Луна — спутник Земли, так и селен — спутник теллура.

Первые применения

«Из всех областей применения селена самой старой и, несомненно, самой обширной является стекольная и керамическая промышленность».

Эти слова взяты из «Справочника по редким металлам», выпущенного в 1965 г. Первая половина этого утверждения бесспорна, вторая вызывает сомнения. Что значит «самой обширной»? Вряд ли эти слова можно отнести к масштабам потребления селена той или иной отраслью. Вот уже на протяжении многих лет главный потребитель селена — полупроводниковая техника. Тем не менее роль селена в стеклоделии достаточно велика и сейчас. Селен, как и марганец, добавляют в стеклянную массу, чтобы обесцветить стекло, устранить зеленоватый оттенок, вызванный примесью соединений железа. Соединение селена с кадмием — основной краситель при получении рубинового стекла; этим же веществом придают красный цвет керамике и эмалям.

В сравнительно небольших количествах селен используют в резиновой промышленности — как наполнитель, и в сталелитейной — для получения сплавов мелкозернистой структуры. Но не эти применения элемента № 34 главные, не они вызывали резкое увеличение спроса на селен в начале 50-х годов. Сравните цену селена в 1930 и 1956 г.: 3,3 доллара за килограмм и 33 соответственно. Большинство редких элементов за это время стали дешевле, селен же подорожал в 10 раз! Причина в том, что как раз в 50-е годы стали широко использоваться полупроводниковые свойства селена.

Выпрямитель, фотоэлемент, солнечная батарея

Обычный серый селен обладает полупроводниковыми свойствами, это полупроводник p-типа, т. е. проводимость в нем создается главным образом не электронами, а «дырками». И что очень важно, полупроводниковые свойства селена ярко проявляются не только в идеальных монокристаллах, но и в поликристаллических структурах.

Но, как известно, с помощью полупроводника только одного типа (неважно какого) электрический ток нельзя ни усилить, ни выпрямить. Переменный ток превращается в постоянный на границе полупроводников p- и n-типов, когда осуществляется так называемый p-n-переход. Поэтому в селеновом выпрямителе вместе с селеном часто работает сульфид кадмия — полупроводник n-типа. А делают селеновые выпрямители так.

На никелированную железную пластинку наносят тонкий, 0,5–0,75-миллиметровый, слой селена. После термообработки сверху наносят еще и «барьерный слой» сульфида кадмия. Теперь этот «сэндвич» может пропускать ноток электронов практически лишь в одном направлении: от железной пластины к «барьеру» и через «барьер» на уравновешивающий электрод. Обычно эти «сэндвичи» делают в виде дисков, из которых собирают собственно выпрямитель. Селеновые выпрямители способны преобразовать ток в тысячи ампер.

Другое практически очень важное свойство селена-полупроводника — его способность резко увеличивать электропроводность под действием света. На этом свойстве основано действие селеновых фотоэлементов и многих других приборов.

Следует иметь в виду, что принципы действия селеновых и цезиевых фотоэлементов различны. Цезий под действием фотонов света выбрасывает дополнительные электроны. Это явление внешнего фотоэффекта. В селене же под действием света растет число дырок, его собственная электропроводность увеличивается. Это внутренний фотоэффект.

Влияние света на электрические свойства селена двояко. Первое — это уменьшение его сопротивления на свету. Второе, не менее важное — фотогальванический эффект, т. е. непосредственное преобразование энергии света в электроэнергию в селеновом приборе. Чтобы вызвать фото- гальванический эффект, нужно, чтобы энергия фотонов была больше некоей пороговой, минимальной для данного фотоэлемента, величины.

Простейший прибор, в котором используется именно этот эффект, — экспонометр, которым мы пользуемся при фотосъемке, чтобы определить диафрагму и выдержку. Прибор реагирует на освещенность объекта съемки, а все прочее за нас уже сделали (пересчитали) те, кто конструировал экспонометр. Селеновые экспонометры распространены весьма широко — ими пользуются и любители и профессионалы.

Более сложные устройства того же типа — солнечные батареи, работающие на Земле и в космосе. Принцип действия их тот же, что у экспонометра. Только в одном случае образующийся ток лишь отклоняет тоненькую стрелку, а в другом питает целый комплекс бортовой аппаратуры искусственного спутника Земли.

Копию снимает селеновый барабан

В 1938 г. американский инженер Карлсон запатентовал метод «селеновой фотографии», который сейчас называют ксерографией, или электрографией. Это, пожалуй, самый быстрый способ получения высококачественных черно-белых копий с любого оригинала — будь то чертеж, гравюра или оттиск журнальной статьи. Важно, что этим способом можно получать (и получать быстро) десятки и сотни копий, а если оригинал бледен, копни можно сделать намного более контрастными. И не нужно специальной бумаги — ксерографическую копию можно сделать даже на бумажной салфетке.

Электрографические машины сейчас выпускают во многих странах, принцип их действия повсюду один и тот же. В основе их действия — уже упоминавшийся внутренний фотоэффект, присущий селену. Главная деталь электрографической машины — металлический барабан, очень гладкий, обработанный по высшему 14-му классу чистоты и сверху покрытый слоем селена, осажденного в вакууме.

Действует эта машина таким образом. Оригинал, с которого предстоит снять копию, вставляют в приемное окно. Подвижные валики переносят его под яркий свет люминесцентных ламп, а система, состоящая из зеркал и фотообъектива, передает изображение на селеновый барабан. Тот уже подготовлен к приему: рядом с барабаном установлен коротрон — устройство, создающее сильное электрическое поле. Попадая в зону действия коротрона, часть селенового барабана заряжается статическим электричеством определенного знака. Но вот на селен спроектировали изображение, и освещенные отраженные светом участки сразу разрядились — электропроводность выросла и заряды ушли. Но не отовсюду. В тех местах, которые остались в тени благодаря темным линиям и знакам, заряд сохранился. Этот заряд в процессе «проявления» притянет частицы тонкодисперсного красителя, тоже уже подготовленного.

109
{"b":"545874","o":1}