Литмир - Электронная Библиотека
Содержание  
A
A

Возможно, лучший пример того, какой потрясающей точности способна достичь математическая теория, – это квантовая электродинамика, теория, описывающая все явления с участием электрически заряженных частиц и света. В 2006 году группа физиков из Гарвардского университета определила магнитный момент электрона (меру взаимодействия электрона с магнитным полем) с точностью до восьми триллионных (Odom et al. 2006). Само по себе это потрясающее достижение экспериментальной физики. Но если принять во внимание еще и то, что новейшие теоретические расчеты, основанные на квантовой электродинамике, дают такую же точность и эти два результата полностью соответствуют друг другу, становится ясно, что точность просто неимоверна. Услышав о таких успехах, один из основателей квантовой электродинамики физик Фримен Дайсон заметил: «Просто поразительно, как точно Природа отплясывает под мотивчик, который был так небрежно сочинен пятьдесят семь лет назад, и как экспериментаторы и теоретики измеряют и рассчитывают этот ее танец с точностью до триллионных долей».

Однако точность – не единственный повод славить математические теории. Есть еще и предсказательная сила. Приведу всего два простых примера – один из XIX века, другой из ХХ. Первая теория предсказала новое явление, вторая – существование нескольких элементарных частиц.

Джеймс Клерк Максвелл, сформулировавший классическую теорию электромагнетизма, в 1864 году предсказал, что, согласно его теории, переменные электрические или магнитные поля должны генерировать распространяющиеся волны. Эти волны – знакомые всем нам электромагнитные волны, в частности радиоволны, – первым обнаружил немецкий физик Генрих Герц (1857–1894) в результате серии опытов, которые он провел в конце 80-х годов XIX века.

В конце 60-х годов XX века физики Стивен Вайнберг, Шелдон Глэшоу и Абдус Салам разработали теорию, которая объединяет электромагнитное и слабое взаимодействия между элементарными частицами[154]. Теперь эта теория известна под названием теории электрослабого взаимодействия. Она предсказала существование трех частиц (W+-, W и Z-бозонов), которые раньше никто не наблюдал. В 1983 году существование этих частиц было однозначно подтверждено в ходе экспериментов на ускорителе (где элементарные частицы сталкивают друг с другом при очень высоких энергиях), которые проделали физики Карло Руббиа и Симон ван дер Мер.

Физик Юджин Вигнер, тот самый, который ввел в обращение фразу «непостижимая эффективность математики», предложил называть все эти неожиданные достижения математических теорий «эмпирическим законом эпистемологии» (эпистемология – дисциплина, изучающая происхождение и пределы знаний). Если бы этот «закон» был неверен, резонно утверждает он, ученым «не хватило бы мужества и уверенности», без которых «нельзя было бы успешно исследовать законы природы». Однако Вигнер не предлагал никаких объяснений эмпирическому закону эпистемологии. Для него это был некий «чудесный дар», за который мы должны быть благодарны, хотя и не представляем себе его происхождение. В сущности, для Вигнера этот «дар» и составлял суть вопроса о непостижимой эффективности математики.

Думаю, мы собрали уже достаточно данных, чтобы хотя бы попытаться ответить на вопросы, которыми задались в самом начале. Почему математика так эффективна, почему она настолько прекрасно объясняет происходящее в мире вокруг нас, что даже позволяет добывать новые знания? И открываем мы ее или изобретаем, в конце концов?

Глава 9

О человеческом разуме, математике и Вселенной

Два вопроса – (1) «Существует ли математика независимо от человеческого разума?» и (2) «Почему математические понятия применимы отнюдь не только в том контексте, в каком их первоначально разрабатывают?» – тесно взаимосвязаны. Тем не менее я постараюсь разобрать их не одновременно, а последовательно, чтобы не усложнять дискуссию.

Прежде всего, вы вправе поинтересоваться, чем считают математику современные математики – изобретением или открытием. Вот как описали положение дел математики Филип Дэвис и Реубен Херш в своей чудесной книге «Математический опыт» («The Mathematical Experience», Davis and Hersh 1981).

Большинство авторов, пишущих на эту тему, похоже, согласны, что типичный профессиональный математик – платоник [считает математику открытием] по будням и формалист [считает ее изобретением] по воскресеньям. То есть когда он занимается математикой, то убежден, что имеет дело с объективной реальностью, чьи свойства пытается определить. Но все же, когда ему приходится оценивать эту реальность с философской точки зрения, ему оказывается проще всего притвориться, будто он в нее на самом деле не верит.

Честно говоря, у меня складывается впечатление, что это можно сказать и в наши дни про многих математиков и физиков-теоретиков – изменились разве что требования политкорректности, связанные с демографическим составом математиков, и теперь у меня возникает искушение написать везде не «он», а «он или она». Однако же некоторые математики ХХ века в действительности занимали вполне определенную позицию – ту или иную. Скажем, Г. Г. Харди в своей «Апологии математика» (Hardy 1940) отстаивает чисто платоническую точку зрения.

Для меня и, думаю, для большинства математиков существует другая реальность, которую я буду называть «математической реальностью», и среди математиков или философов нет единого мнения относительно природы математической реальности. Одни полагают, что она существует «в умах» и что мы, в некотором смысле, конструируем ее. Другие считают, что она лежит вне нас и не зависит от нас. Человек, который мог бы дать убедительное описание математической реальности, разрешил бы очень многие из труднейших проблем метафизики. Если бы такой человек мог включить в свое описание и физическую реальность, то он разрешил бы все проблемы метафизики. Мне не следовало бы обсуждать любой из этих вопросов, даже если бы я был достаточно компетентен для этого, но я изложу свою позицию догматически, чтобы избежать малейшего недопонимания. Я убежден в том, что математическая реальность лежит вне нас, что наша функция состоит в том, чтобы открывать или обозревать ее, и что теоремы, которые мы доказываем и великоречиво описываем как наши «творения», по существу представляют собой наши заметки о наблюдениях математической реальности. Эту точку зрения в той или иной форме разделяли многие философы самого высокого ранга, начиная с Платона, и я буду пользоваться языком, естественным для человека, разделяющего эту точку зрения.

Прямо противоположную точку зрения отстаивают математики Эдвард Каснер (1878–1955) и Джеймс Ньюмен (1907–1966) в своей книге «Математика и воображение» («Mathematics and the Imagination», Kasner and Newman 1989).

То, что математика занимает высокое положение, несравнимое с положением любой другой области целенаправленного мышления, неудивительно. Она обеспечила столько достижений естественных наук, она стала столь незаменимой в делах практических и столь легко превращается в шедевр чистой абстракции, что лишь естественно признать ее главенство среди прочих интеллектуальных достижений человека.

Несмотря на это главенство, предлог для первой значительной оценки математики представился лишь недавно – с появлением неевклидовой и четырехмерной геометрии. Мы вовсе не стремимся принизить достижения математического анализа, теории вероятности, арифметики бесконечных величин, топологии и прочих дисциплин, о которых мы говорили. Каждая из них расширила пределы математики и углубила как ее смысл, так и наше понимание физической Вселенной. Однако ни одна из них не способствовала математическому самоанализу, познанию того, как соотносятся разные части математики между собой и с математикой в целом более, чем неевклидова ересь.

вернуться

154

Прекрасное описание можно найти в Weinberg 1993.

54
{"b":"543219","o":1}