Литмир - Электронная Библиотека
Содержание  
A
A

Представьте себе, что Солнце внезапно исчезло. Земля, лишившись силы, которая удерживает ее на орбите, согласно Ньютону должна начать движение по прямой, не считая мелких отклонений, вызванных гравитацией прочих планет. Однако обитатели Земли будут видеть Солнце еще около восьми минут, поскольку именно столько нужно свету, чтобы преодолеть дистанцию от Солнца до Земли. Иначе говоря, движение Земли изменится раньше, чем исчезнет Солнце.

Чтобы разрешить это противоречие и одновременно найти подход к вопросу, на который не ответил Ньютон, Эйнштейн окунулся в поиски новой теории гравитации с жаром на грани одержимости. Задача была неподъемная. Любая новая теория должна была не только обладать всеми поразительными достоинствами ньютоновой, но и объяснять, как гравитация устроена и как она действует, причем так, чтобы это не противоречило специальной теории относительности.

После нескольких фальстартов и долгих блужданий по извилистым тропам, которые в конце концов заводили в тупик, Эйнштейн в 1915 году все же достиг своей цели. Многие считают, что его общая теория относительности – одна из самых красивых теорий в истории науки.

Основой потрясающего открытия Эйнштейна стала идея, что гравитация – всего лишь искажение ткани пространства-времени. По Эйнштейну, планеты, словно мячики для гольфа, чей путь определяется горками и впадинками на неровном поле, следуют по искривленным траекториям в искривленном пространстве, которое соответствует гравитации Солнца. Иначе говоря, в отсутствие вещества или других форм энергии пространство-время (единая ткань из трех пространственных измерений и одного временного) было бы плоским. Вещество и энергия искажают пространство-время точно так же, как тяжелый шар для боулинга заставляет батут провисать. В этой криволинейной геометрии планеты описывают самые что ни на есть прямые траектории, и это и есть проявления гравитации. Когда Эйнштейн решал задачу о том, как «устроена» гравитация, то заложил еще и основу для ответа на вопрос, с какой скоростью она распространяется. А вопрос о распространении сводится к определению, с какой скоростью может изменяться кривизна пространства-времени. Это примерно как подсчитывать скорость распространения ряби по воде. Эйнштейн сумел показать, что согласно общей теории относительности гравитация распространяется в точности со скоростью света – и это ликвидировало противоречия между ньютоновой теорией и специальной теорией относительности. Если Солнце исчезнет, орбита Земли начнет меняться восемь минут спустя, тогда же, когда мы пронаблюдаем исчезновение нашего светила.

То, что Эйнштейн сделал краеугольным камнем своей новой теории мироздания искривленное четырехмерное пространство-время, означало, что ему была срочно нужна математическая теория подобных геометрических сущностей. В полном отчаянии он писал своему бывшему соученику, математику Марселю Гроссману (1878–1936): «Математика, наиболее изящные области которой я раньше считал чистейшей роскошью, вызывает у меня величайшее уважение». Гроссман посоветовал Эйнштейну обратиться к неевклидовой геометрии Римана (о ней мы уже говорили в главе 6) – он считал, что именно этот инструмент, геометрия искривленных пространств с произвольным числом измерений, и необходим Эйнштейну. Вот он, ярчайший пример «пассивной» эффективности математики, которую Эйнштейн не замедлил признать: «В сущности, геометрию можно считать самой древней областью физики, – объяснил он. – Без нее я не смог бы сформулировать теорию относительности».

Кроме того, общую теорию относительности удалось проверить с поразительной точностью. Проделать эти измерения было совсем не просто, поскольку относительные величины искривлений пространства-времени, вызванных объектами вроде Солнца, измеряются десятитысячными долями процента. Первоначально измерения ограничивались наблюдениями в пределах Солнечной системы (например, крошечными отклонениями орбиты Меркурия от расчетов, выполненных согласно законам Ньютона), однако в последнее время стали возможны и более экзотические проверки. Среди лучших экспериментальных доказательств – данные наблюдений над астрономическим объектом под названием двойной пульсар.

Пульсар – это необычайно компактная звезда, излучающая в радиодиапазоне, масса которой несколько больше массы Солнца, а радиус – всего около 10 километров. Плотность такой звезды – ее еще называют нейтронной звездой – так высока, что несколько кубических сантиметров ее вещества обладают массой в миллиард тонн. Многие такие нейтронные звезды очень быстро вращаются и при этом излучают радиоволны из магнитных полюсов. Если магнитная ось пульсара несколько наклонена относительно оси вращения, как на рис. 61, радиолуч с одного или другого полюса пересекает наш луч зрения лишь один раз за оборот, словно луч маяка. В таком случае радиоизлучение будет словно бы пульсировать, отсюда и название. Иногда случается, что два пульсара вращаются вокруг общего центра тяжести по тесным орбитам, образуя систему двойного пульсара.

Двойной пульсар служит превосходной лабораторной установкой для проверки общей теории относительности по двум причинам: (1) радиопульсары – это отменные часы, поскольку частота вращения у них настолько стабильна, что они даже точнее атомных часов, и (2) пульсары так компактны, что их гравитационные поля очень сильны, что приводит к значительным релятивистским эффектам. Эти особенности позволяют астрономам очень точно измерять изменения промежутка времени, которое требуется свету, чтобы добраться до Земли, вызванные орбитальным вращением двух пульсаров в гравитационном поле друг друга.

Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса - i_067.jpg

Рис. 61

Недавняя проверка общей теории относительности была основана на измерениях кривой блеска двойного радиопульсара PSR J0737–3039A/B (этот «длинный телефонный номер» указывает небесные координаты объекта), продолжавшихся в течение двух с половиной лет. Два пульсара в этой системе совершают оборот по орбите всего за два часа двадцать семь минут, а система находится на расстоянии около двух тысяч световых лет от Земли (световой год – это расстояние, которое проходит за год свет в вакууме, около 9,5 триллионов километров). Группа астрономов во главе с Майклом Крамером из Манчестерского университета измерила релятивистские отклонения этих пульсаров от ньютоновского закона движения. В октябре 2006 года были опубликованы результаты (Kramer et al. 2006), которые соответствовали предсказаниям общей теории относительности с погрешностью всего в 0,05 %!

Кстати, и специальная, и общая теории относительности играют важную роль в той самой системе GPS (Global Positioning System), которая помогает нам определять свое местоположение на Земле и прокладывать путь из одной точки в другую на машине, на самолете или пешком. GPS определяет текущее положение приемника, измеряя время, за которое до него доходит сигнал с нескольких спутников, и проводя тригонометрические расчеты на основании известного положения каждого спутника. Специальная теория относительности предсказывает, что атомные часы на борту спутников идут медленнее (с отставанием на несколько миллионных секунды в сутки), чем на Земле, из-за их относительного движения. При этом общая теория относительности предсказывает, что часы на спутниках идут быстрее (на несколько стотысячных секунды в сутки), чем часы на Земле, из-за того что высоко над земной поверхностью искривление пространства-времени, вызванное массой Земли, становится меньше. Без этих поправок ошибки в определении местоположения на земном шаре накапливались бы со скоростью около десяти километров в день.

Теория гравитации – лишь один из множества примеров, показывающих, как замечательно и с какой поразительной точностью математические формулы описывают законы природы. В этом случае, как и во многих других, мы получаем из уравнений гораздо больше, чем в них вложили. Как теперь доказано, точность обеих теорий – и Ньютона, и Эйнштейна, – значительно превосходит точность наблюдений, ради объяснения которых эти теории были задуманы.

53
{"b":"543219","o":1}