Литмир - Электронная Библиотека
Содержание  
A
A

Представления Платона об астрономических исследованиях казались противоречивыми даже некоторым самым убежденным платоникам. Сторонники его идей утверждали, что на самом деле Платон считает не что подлинная астрономия должна заниматься какими-то идеальными небесами, не имеющими отношения к наблюдаемым, но что ее задача – изучать реальное движение небесных тел, а не искаженное, какое мы наблюдаем с Земли. Однако многие мыслители указывают, что, если понимать максиму Платона слишком буквально, это сильно затруднило бы развитие наблюдательной астрономии как науки. Впрочем, как бы мы ни толковали отношение Платона к астрономии, во всем, что касается основ математики, платонизм играет ведущую роль.

Но существует ли платоновский мир математики на самом деле? И если да, то, собственно, где? И что это за «объективно истинные» утверждения, которые населяют этот мир? Или же математики, которые придерживаются платонизма, просто выражают те же романтические представления, каких, как говорят, придерживался великий художник Возрождения Микеланджело? Согласно легенде, Микеланджело был убежден, что его великолепные скульптуры уже существуют в глубине мраморных глыб, а его задача – лишь стесать все лишнее.

Современные платоники (да-да, они есть, и их представления мы подробно опишем в следующих главах) настаивают, что платоновский мир математических форм совершенно реален, и предлагают конкретные, по их мнению, примеры объективно истинных математических утверждений, которые обитают в этом мире.

Рассмотрим следующее простое и понятное утверждение. Каждое четное целое число больше двух можно представить в виде суммы двух простых чисел (делящихся только на себя и единицу). Это несложное на первый взгляд утверждение называется проблемой Гольдбаха, поскольку именно в такой формулировке обнаружено в письме прусского математика-любителя Кристиана Гольдбаха (1690–1764) Леонарду Эйлеру от 7 июня 1742 года. Убедиться в верности этого утверждения для первых нескольких четных чисел совсем не трудно: 4 = 2 + 2; 6 = 3 + 3; 8 = 3 + 5; 10 = 3 + 7 (или 5 + 5); 12 = 5 + 7; 14 = 3 + 11 (или 7 + 7); 16 = 5 + 11 (или 3 + 13) и так далее. Утверждение это до того просто, что британский математик Г. Г. Харди объявил, что «любой дурак мог бы догадаться». Более того, французский математик и философ Рене Декарт высказал это предположение еще до Гольдбаха. Однако выяснилось, что сформулировать проблему легко, а вот доказать – совсем другое дело. В 1966 году китайский математик Чэнь Цзинжунь сделал существенный шаг по пути к доказательству. Он сумел показать, что всякое достаточно большое четное число представляет собой сумму двух чисел, одно из которых простое, а второе имеет не более двух простых делителей. К концу 2005 года португальский ученый Томаш Оливейра э Сильва показал, что это утверждение верно для чисел, не превышающих 3 × 1017 (до трехсот тысяч триллионов). И все же, несмотря на колоссальные усилия многих талантливых математиков, на сегодняшний день, когда я пишу эти строки, общее доказательство так и не удалось найти. К желаемому результату не привел даже дополнительный стимул в виде миллиона долларов, которые предложили в виде награды всякому, кто найдет доказательство в срок с 20 марта 2000 года по 20 марта 2002 года (в рамках рекламной кампании романа А. К. Доксиадиса «Дядюшка Петрос и проблема Гольдбаха» [Doxiadis 2000]).

Тут-то перед нами и встает вопрос о значении «объективной истины» в математике. Предположим, что в 2016 году все же будет представлено строгое доказательство проблемы Гольдбаха. Можно ли будет тогда сказать, что это утверждение было верным уже тогда, когда о нем задумался Декарт? Многие, наверное, согласятся, что это глупый вопрос. Ясно, что если истинность утверждения доказана, значит, оно всегда было истинным, даже до того, как мы в этом убедились. Или рассмотрим другой невинный на вид пример – гипотезу Каталана (подробнее см. Ribenboim 1994). Числа 8 и 9 – последовательные целые числа, и каждое из них равно степени натурального числа – 8 = 23 и 9 = 32. В 1844 году бельгийский математик Эжен Шарль Каталан (1814–1894) предположил, что среди всех возможных степеней целых чисел лишь одна пара последовательных чисел, за исключением 0 и 1, представляет собой степени других целых чисел, и это 8 и 9. Иными словами, можно хоть всю жизнь записывать все целые степени, однако не найдешь другой пары таких чисел, которые различаются на 1. На самом деле, еще в 1342 году франко-еврейский философ и математик Леви бен Гершом (1288–1344) доказал малую часть этой гипотезы: он показал, что 8 и 9 – это единственные степени 2 и 3, которые различаются на 1. Большой шаг вперед был сделан математиком Робертом Тейдеманом в 1976 году. И все же доказательство гипотезы Каталана в общем виде ставило в тупик лучшие математические умы вот уже более 150 лет. Но вот наконец 18 апреля 2002 года румынский математик Преда Михайлеску представил полное доказательство гипотезы. Оно было опубликовано в 2004 году и на сегодня полностью принято математическим сообществом. И снова можно задаться вопросом: когда гипотеза Каталана стала истинной: в 1342 году? В 1844? В 1976? В 2002? В 2004? Разве не очевидно, что это утверждение всегда было истинным, хотя мы не знали, что оно истинно? Именно такого рода утверждения платоники и называют «объективными истинами».

Некоторые математики, философы, специалисты по когнитивной психологии и другие «потребители» математики, например программисты, считают платоновский мир плодом воображения чересчур мечтательных умов (такую точку зрения и другие догмы мы еще обсудим подробнее на страницах этой книги, в главе 9). Более того, в 1940 году знаменитый историк математики Эрик Темпл Белл (1883–1960) сделал вот какое предсказание (Bell 1940).

Согласно пророкам, последний приверженец платоновских идеалов разделит участь динозавров к 2000 году. И тогда к математике, лишившейся мифического покрова этернализма, будут относиться именно как к той науке, какой она была всегда, – к языку, изобретенному людьми с определенной целью, которую они сами себе поставили. Последний храм абсолютной истины исчезнет, а вместе с ним исчезнет и ничто, которое в нем свято оберегали.

Предсказание Белла не сбылось. Хотя в науке и появились догмы, диаметрально противоположные платонизму (правда, противоположные, если можно так выразиться, с разных сторон), им не удалось полностью завоевать умы (и сердца!) всех математиков и философов, и раскол между ними в наши дни остался прежним.

Однако давайте предположим, что в один прекрасный день платонизм победил, и все мы стали убежденными платониками. Объясняет ли платонизм «непостижимую эффективность» математики при описании нашего мира? Не совсем. Почему физическая реальность ведет себя в соответствии с законами, обретающимися в абстрактном платоновском мире? Ведь в этом, в сущности, и состоит одна из загадок Пенроуза, а Пенроуз – убежденный платоник. Так что пока придется нам смириться с фактом, что даже если бы все мы стали сторонниками платонизма, тайна могущества математики осталась бы тайной. По словам Вигнера: «Невольно создается впечатление, что чудо, с которым мы сталкиваемся здесь, не менее удивительно, чем чудо, состоящее в способности человеческого разума нанизывать один за другим тысячи аргументов, не впадая при этом в противоречие».

Чтобы вполне оценить масштабы этого чуда, нам придется углубиться в жизнь и наследие самих чудотворцев – блистательных умов, которым мы обязаны открытием множества неимоверно точных математических законов природы.

Глава 3

Волшебники: наставник и еретик

Наука, в отличие от десяти заповедей, попала в руки человечества не в виде надписей на внушительных каменных скрижалях. История науки – это история взлетов и падений многочисленных теорий, умозаключений и моделей. Многие идеи, на вид весьма многообещающие, оказались фальстартами или вели в тупик. Многие теории, казавшиеся в свое время незыблемыми, впоследствии разваливались, не пройдя суровых испытаний дальнейших экспериментов и наблюдений, и оказывались забыты навеки. Даже незаурядный ум авторов некоторых концепций не гарантировал, что эти концепции не будут смещены со сцены. Например, великий Аристотель был убежден, что камни, яблоки и прочие тяжелые предметы падают вниз, поскольку ищут свое естественное место, а оно – в центре Земли. Когда эти тела приближаются к Земле, утверждал Аристотель, они ускоряются, поскольку рады вернуться домой. А вот воздух (и огонь) поднимаются вверх, поскольку естественное место воздуха – в небесных сферах. Каждому предмету приписывалась своя природа на основании того, к какой стихии, как считалось, они ближе всего – к земле, огню, воде или воздуху. Как говорил сам Аристотель (Aristotle ca. 330 BCa, b; см. также Koyré 1978).

11
{"b":"543219","o":1}