Литмир - Электронная Библиотека
Содержание  
A
A

Из существующих [предметов] одни существуют по природе, другие – в силу иных причин. … Простые тела, как-то: земля, огонь, воздух, вода – эти и подобные им, говорим мы, существуют по природе. Все упомянутое очевидно отличается от того, что образовано не природой: ведь все существующее по природе имеет в самом себе начало движения и покоя… … Природа есть некое начало и причина движения и покоя для того, чему она присуща первично, сама по себе… Согласно с природой [ведут себя] и эти [предметы], и все, что присуще им само по себе, например огню нестись вверх… (Пер. В. Карпова.)

Аристотель даже попытался сформулировать количественный закон движения. Он утверждал, что чем тяжелее предмет, тем быстрее он падает, причем его скорость прямо пропорциональна весу (то есть предмет вдвое тяжелее и падать будет со вдвое большей скоростью). Хотя житейский опыт и показывал, что это вполне разумно – ведь и правда кирпич ударяется о пол раньше, чем перышко, если бросить их с одной высоты, – однако Аристотель так и не подверг свое количественное утверждение более тщательной проверке. То ли ему это не приходило в голову, то ли он не считал необходимым проверить, действительно ли два кирпича, связанные вместе, падают вдвое быстрее, чем один кирпич. Галилео Галилей (1564–1642) придавал гораздо больше значения математике и эксперименту, а благополучие падающих яблок и кирпичей не слишком его заботило, и он первым заметил, что Аристотель глубоко заблуждался. При помощи хитроумного мысленного эксперимента Галилею удалось показать, что закон Аристотеля не имеет никакого смысла, поскольку логически непоследователен (Galileo 1589–92). Рассуждал Галилей следующим образом. Предположим, мы свяжем вместе два предмета, один легче, другой тяжелее. С какой скоростью упадет получившийся составной предмет по сравнению с двумя предметами, из которых он состоит? С одной стороны, согласно закону Аристотеля, можно сделать вывод, что упадет он с какой-то средней скоростью, поскольку более легкий предмет задержит падение более тяжелого. С другой, если учесть, что составной предмет на самом деле тяжелее каждой из своих частей, падать он должен даже быстрее, чем более тяжелый из двух компонентов, а это приводит к очевидному противоречию. Перо на Земле падает медленнее кирпича по одной простой причине – из-за сопротивления воздуха: если бы перо и кирпич падали с одной и той же высоты в вакууме, то коснулись бы пола одновременно. Это показали самые разные эксперименты, самый зрелищный из которых провел Дэвид Рэндольф Скотт, астронавт с «Аполлона-15» и седьмой человек, чья нога ступала на Луну: он одновременно выпустил из одной руки молоток, а из другой перо. Поскольку никакой существенной атмосферы у Луны нет, молоток и перо коснулись поверхности одновременно.

Но самое удивительное в ошибочном законе Аристотеля не то, что он неправильный, а то, что в нем за две тысячи лет никто не усомнился. Как удалось очевидно неверной идее достичь такого примечательного долголетия? Перед нами пример «идеального шторма» – уникального стечения неблагоприятных обстоятельств: совокупное действие трех сил обеспечило создание незыблемой догмы. Во-первых, налицо простой факт: в отсутствие точных средств измерения закон Аристотеля вроде бы соответствует жизненному опыту: листы папируса и правда парили в воздухе, а куски свинца – нет. Нужен был гений Галилея, чтобы заявить, что жизненный опыт и здравый смысл могут наталкивать на неверные выводы. Во-вторых, надо учесть, каким колоссальным весом обладала практически непревзойденная репутация и авторитет Аристотеля как ученого. Ведь именно он и не кто иной заложил основы западной интеллектуальной культуры. Аристотель буквально сказал все обо всем – будь то исследование всех природных явлений или фундамент этики, метафизики, политики и искусства. Мало того – Аристотель в некотором смысле научил нас, как именно следует думать, поскольку первым начал исследовать формальную логику. Сегодня с революционной и, можно сказать, совершенной системой логических выводов – силлогизмов – Аристотеля знаком, наверное, каждый школьник.

1. Всякий грек – человек.

2. Всякий человек смертен.

3. Следовательно, всякий грек смертен.

(Подробнее о таких логических конструкциях мы поговорим в главе 7.)

Третья причина невероятной жизнестойкости ошибочной теории Аристотеля заключается в том, что христианская церковь включила ее в свою систему догматов. А это надежно защищало предположения Аристотеля от любых попыток их оспорить.

Несмотря на значительный вклад в систематизацию дедуктивной логики, Аристотеля чтят не за достижения в математике. Пожалуй, достойно удивления, что человек, который, в сущности, основал науку, поскольку догадался, что к ней нужен систематический подход, так мало думал о математике (гораздо меньше Платона) и был настолько не силен в физике. Хотя Аристотель признавал важность численных и геометрических соотношений в науках, математику он по-прежнему считал абстрактной дисциплиной, никак не связанной с физической реальностью. Следовательно, хотя интеллектуальная мощь Аристотеля не подлежит сомнению, в мой список «математиков-волшебников» он не входит.

«Волшебниками» я буду называть тех уникумов, которые способны вытаскивать кроликов из буквально пустых шляп, тех, кто открыл связи между математикой и природой, которые раньше никому не приходили в голову, тех, кто способен наблюдать сложные природные феномены и вычленять из них кристально чистые математические законы. В иных случаях эти мыслители высшего порядка продвигали математику вперед даже благодаря своим наблюдениям и экспериментам. Вопрос о непостижимой эффективности математики при объяснении природных явлений и не возник бы, если бы не подобные волшебники. Загадка могущества математики прямо и непосредственно порождена чудесными озарениями этих исследователей.

Чтобы воздать должное всем великолепным физикам и математикам, благодаря которым сформировалась наша картина мироздания, одной книги не хватит. В этой и следующей главе я расскажу лишь о четырех титанах минувших веков – о научных звездах самой что ни на есть первой величины, которых без малейших сомнений можно назвать волшебниками. Первый волшебник в моем списке запомнился человечеству довольно странным поступком: он пробежал по улицам родного города в чем мать родила.

Дайте мне точку опоры, и я сдвину Землю

Когда историк математики Эрик Темпл Белл был вынужден принять решение, кого включить в число трех своих любимых математиков, то пришел к следующему выводу.

В любой список трех «величайших» математиков в истории обязательно вошел бы Архимед. Остальные два имени, которые обычно ставят в один ряд с Архимедом, – это Ньютон (1642–1727) и Гаусс (1777–1855). Если же принять в расчет относительное богатство – или бедность – математики и естествознания в соответствующие исторические периоды, когда жили эти титаны, и оценить их достижения в контексте того времени, многие, пожалуй, отдадут пальму первенства Архимеду.

Архимед (287–212 гг. до н. э.; на рис. 10 приведен бюст, который считают портретом Архимеда, но на самом деле это, вероятно, бюст какого-то спартанского царя) и в самом деле был Ньютоном и Гауссом своего времени – и отличался таким блестящим умом, живым воображением и поразительной интуицией, что и современники, и последующие поколения произносили его имя с почтением и благоговением. И хотя Архимед больше известен инженерными изобретениями, прежде всего он был математиком, и как математик он опередил свое время на века. К сожалению, о детстве и юности Архимеда и о его семье нам почти ничего не известно. Первую его биографию написал некто Гераклид, до нас она не дошла, и то немногое, что нам известно о его жизни и гибели, восходит к сочинениям римского историка Плутарха[21]. А Плутарх (ок. 46–120) больше интересовался победами римского военачальника Марцелла, который в 212 году до н. э. завоевал город Сиракузы, где жил Архимед (Plutarch ок. 75). К счастью для истории математики, Архимед во время осады Сиракуз доставил Марцеллу столько хлопот, что три величайших историка того времени – Плутарх, Полибий и Тит Ливий – не могли его не упомянуть.

вернуться

21

Это упомянуто в комментариях математика Евтокия (ок. 480–540) к сочинению Архимеда «Измерение круга»; см. Heiberg 1910–15.

12
{"b":"543219","o":1}