Литмир - Электронная Библиотека
Содержание  
A
A

Теперь вам ясно, что метод дядюшки Генри эквивалентен арифметике вычетов? Единственное отличие состоит в том, что каждая из 3 бутылок, стоящих в середине, соответствует двум числам, поскольку эти бутылки приходится считать и слева направо, и справа налево. Счет 8 приходится на вторую бутылку, после чего весь цикл повторяется. Следовательно, метод дядюшки Генри эквивалентен арифметике вычетов по модулю 8.

Элен оставалось лишь найти вычет числа 1976 по модулю 8, то есть разделить 1976 на 8 и найти остаток. Проделав вычисления, Элен получила остаток 0. В арифметике вычетов по модулю 8 число 8 имеет нулевой вычет. Следовательно, счет до 1976 должен окончиться на второй бутылке.

Предположим, что вам захотелось узнать, на какой бутылке кончит считать дядюшка Генри, если вздумает дойти, например, до 12 345 678 987 654 321. Нужно ли для этого делить гигантское число на 8? Нет, если вы сообразите, как избежать утомительной процедуры. Так как число 1000 сравнимо с 0 по модулю 8, то необходимо делить на 8 только 3 последних знака — число 321, Проделав деление, вы узнаете, что интересующее вас семнадцатизначное число сравнимо с 1 по модулю 8. Следовательно, вздумай дядюшка Генри считать до этого числа, он бы закончил счет на первой бутылке.

Варьируя число бутылок, вы будете получать модели конечных арифметик вычетов по другим четным модулям. Если бутылки считать, как обычно, только слева направо, то вы получите модель конечной арифметики вычетов по любому модулю, как четному, так и нечетному.

Со счетом предметов, расположенных по кругу, связана знаменитая задача Иосифа Флавия, породившая обширную литературу и многочисленные варианты. Приведем еще один вариант этой старинной задачи в надежде, что он покажется вам забавным.

Давным-давно у одного богатого и могущественного короля была дочь, по имени Жозефина. Никто не мог сравниться с ней красотой. Сотни юношей из самых знатных родов тщетно мечтали получить ее руку и сердце. Наконец, Жозефина выбрала десять из них, которые нравились ей чуть больше других. Но прошло несколько месяцев, а Жозефина никак не могла решить, на ком из них остановить свой выбор. Король не на шутку встревожился.

— Ты знаешь, моя возлюбленная дочь, — начал он издалека, обращаясь к дочери, — что через месяц тебе исполнится семнадцать лет, а по старинному обычаю все принцессы должны выйти замуж прежде, чем достигнут этого возраста.

— Но, папочка, — возразила своенравная Жозефина, — как быть, если я не уверена, что Джордж нравится мне больше других?

— В таком случае, моя ненаглядная, обычай предписывает выбирать жениха по особому тайному ритуалу, недоступному разумению непосвященных. Хорошо, что ты мне, наконец, сказала, в чем твое затруднение. Мы решим его сегодня же, а там и за свадебку!

И король принялся объяснять дочери, как ей надлежит выбирать жениха в соответствии с требованиями старинного ритуала.

— Все десять претендентов на твою руку встанут в круг. Ты выберешь любого из них, назовешь его первым и отсчитаешь от него по часовой стрелке семнадцать человек — ровно столько, сколько лет тебе вскоре исполнится. Семнадцатому юноше придется покинуть круг. Мы отошлем его домой, подарив ему в утешение кошелек со 100 золотыми дукатами.

А ты примешься снова считать от 1 до 17, на этот раз назвав первым юношу, следующего по кругу за тем, кто выбыл. Так ты будешь продолжать до тех пор, пока из круга не выйдут все претенденты на твою руку, кроме одного. Он-то и станет твоим мужем.

Жозефина нахмурилась и сказала:

— Боюсь, как бы мне что-нибудь не напутать, папочка. Ты не возражаешь, если я возьму десять золотых дукатов и немного попрактикуюсь на них?

Король согласился. Жозефина разложила в круг 10 дукатов и принялась считать, откладывая каждый раз семнадцатую монету в сторону, пока не остался один-единственный дукат. Король был в восторге: дочь в совершенстве овладела тайным ритуалом.

Он повелел десятерым претендентам на руку принцессы собраться в тронном зале. Они выстроились в круг, и Жозефина принялась считать. Она без колебаний назвала первым Персиваля и считала до тех пор, пока в круге не остался только Джордж — тот самый юноша, за которого она тайком давно решила выйти замуж.

Как Жозефина догадалась, с кого ей следует начать счет, чтобы он закончился на милом ее сердцу Джордже?

Практикуясь на монетах, Жозефина заметила, что в круге остается третья монета, если первой назвать ту, с которой она начала счет. Поэтому войдя в круг претендентов, она уверенно начала счет с Персиваля, после которого третьим стоял Джордж.

Интересным обобщением задачи Иосифа Флавия был бы следующий карточный фокус, если бы вам удалось соответствующим образом расположить 13 карт пиковой масти. Сумеете ли вы это сделать?

Вот как должен был бы выглядеть этот фокус. В одну руку вы берете стопку карт вверх рубашкой. Отсчитав сверху 1 карту, вы кладете ее на стол и открываете. Перед вами туз пик. Затем вы отсчитываете сверху 2 карты, первую подкладываете снизу под стопку карт, которая у вас в руке, а вторую открываете и кладете на стол: перед вами двойка пик. Затем вы отсчитываете сверху 3 карты, подкладывая первые две в том же порядке, в каком вы их снимаете, под стопку карт снизу, а третью карту открываете и кладете на стол: перед вами тройка пик. Продолжая счет дальше, вы каждый раз перекладываете карты по одной сверху вниз (что эквивалентно счету по кругу в задаче Иосифа Флавия), а последнюю открываете и кладете на стол. В итоге на столе оказываются выложенными по порядку все 13 карт пиковой масти от туза до короля.

Карты в стопке должны лежать в следующем порядке (сверху вниз): туз, восьмерка, двойка, пятерка, десятка, тройка, дама, валет, девятка, четверка, семерка, шестерка, король.

Может быть вам покажется, что выстроить такую последовательность удалось лишь методом проб и ошибок после многих безуспешных попыток. Вы глубоко заблуждаетесь: для получения таких последовательностей существует очень простой алгоритм. Многие фокусники, разрабатывая трюки такого рода, действительно немало времени проводят в раздумьях над тем, как расположить карты, пока внезапная догадка не превратит задачу, над решением которой они безуспешно бились не один день, в тривиальную. Удастся ли вам разгадать, как строится последовательность в задуманном нами фокусе в духе Иосифа Флавия, прежде чем вы заглянете в ответ, помещенный в конце книги.

Глава 4

Логические находки

Неожиданные решения задач, требующих умения мыслить последовательно

В этой главе нас будет интересовать не формальная логика, а задачи, для решения которых не нужны особые познания в математике, но необходимо умение мыслить последовательно. Некоторые из предлагаемых нами задач напоминают загадки в том смысле, что содержат умышленно введенные в их условия утверждения, способные «сбить с толку» не слишком проницательного читателя, или решения, основанные на игре слов, но в большинстве случаев мы предлагаем вам честную игру — задачи, которые имеют решение.

В том, как собранные в этой главе различные логические задачи-головоломки относятся к математике, нетрудно усмотреть некую общую тенденцию. Все математические задачи решаются при помощи рассуждений, проводимых в рамках некоторой дедуктивной системы, включающей в себя наряду с другими правилами основные законы логики. Хотя для решения любой задачи из этой главы не требуется знание формальной логики, тем не менее ведущие к решению неформальные рассуждения по существу имеют много общего с теми, которые проводят математики, физики, химики и биологи, сталкиваясь с какой-нибудь трудной проблемой.

Под «трудной проблемой» мы понимаем здесь задачу, подход к решению которой неизвестен. Разумеется, если алгоритм решения существует, то ни о какой по-настоящему трудной проблеме не может быть и речи: достаточно лишь засыпать зерна исходных данных и привести в действие жернова алгоритма, как мы получим ответ. Например, памятная всем формула корней квадратного уравнения говорит нам о том, какие действия и в какой последовательности необходимо произвести над коэффициентами уравнения, чтобы найти его корни.

27
{"b":"315660","o":1}