Литмир - Электронная Библиотека
Содержание  
A
A

Аналитически в этом можно удостовериться, если записать параметрические уравнения винтовой линии и проварьировать входящий в них угол ϑ от 0° до 90°. И прямая, и окружность — предельные формы более общей пространственной кривой, получившей название винтовой линии. Правильная винтовая линия — единственная пространственная кривая постоянной кривизны. Этим и объясняется, почему мечи, вкладывающиеся в ножны, можно изготовить только в форме правильной винтовой линии (что выглядело бы несколько необычно) и двух ее предельных случаев — прямой и окружности.

Проекция винтовой линии на плоскость, перпендикулярную ее оси, имеет форму окружности. Спроецировав винтовую линию на плоскость, параллельную оси, мы получим синусоиду. В этом нетрудно убедиться, если снова воспользоваться параметрическими уравнениями кривой. Многие свойства синусоиды можно изучать по ее близкой родственнице — винтовой линии.

В этой связи мы хотим рассказать одну забавную историю-задачу, допускающую (при надлежащем подходе) очень простое решение. Внутри цилиндрической башни высотой 100 м ходит лифт. Снаружи башни имеется винтовая лестница, образующая с вертикалью постоянный угол ϑ = 60°. Диаметр башни 13 м.

Однажды мистер и миссис Пицца поднялись на лифте на смотровую площадку, расположенную на вершине башни. Их сын Томато Пицца предпочел идти наверх пешком. Когда он добрался до смотровой площадки, вид у него был не блестящий.

— Не мудрено, что ты устал, сынок, — заметил мистер Пицца. — Ведь тебе пришлось проделать вчетверо больший путь, чем нам, и все пешком.

— Ты ошибаешься, папа, — ответил Том. — Я прошел лишь вдвое больший путь, чем вы проехали.

Кто прав: Том или его отец?

Кое-кто склонен думать, будто для того, чтобы вычислить длину винтовой лестницы, необходимо знать диаметр башни. В действительности информация о диаметре башни совершенно лишняя!

Дело в том, что винтовую лестницу можно развернуть в гипотенузу прямоугольного треугольника с острым углом 30° и высотой 100 м, а гипотенуза такого треугольника вдвое больше высоты (катета, лежащего против угла 30°), Следовательно, прав был Том.

Убедиться в этом вы можете, развернув какую-нибудь картонную трубку. Возможно, исход эксперимента несколько удивит вас: вы увидите, что длина шва (винтовой линии, как бы навитой на трубку) не зависит от диаметра цилиндра, в который скручен прямоугольный треугольник.

Пари на полюсе

Есть идея! - i108.png

Знаменитый игрок Дэн, по прозвищу Ставлю Доллар, сидел в баре со своим другом Диком, по профессии пилотом.

Есть идея! - i109.png

Дэн. Дик, ставлю доллар, что ты не сможешь решить простой задачки. Самолет пролетает 100 км, держа курс на юг, затем 100 км на восток и 100 км на север, после чего оказывается в исходной точке. Откуда он вылетел?

Есть идея! - i110.png

Дик. Принимаю пари, Дэн. Задачка твоя давно известна. Самолет вылетел с Северного полюса.

Дэн. Правильно. Держи доллар. Ставлю еще доллар, что ты ни за что не догадаешься, откуда еще мог вылететь самолет.

Есть идея! - i111.png

Дик погрузился в размышления.

Есть идея! - i112.png

Дик. Другой точки, кроме Северного полюса, нет и быть не может, и я берусь доказать это. Предположим, что самолет вылетает из точки, расположенной между Северным полюсом и экватором.

Есть идея! - i113.png

Дик. Ясно, что в этом случае конечная точка маршрута не может совпадать с исходной. Если же самолет вылетает из точки, расположенной на экваторе, то конечная точка маршрута оказывается примерно в 100 км от исходной точки.

Есть идея! - i114.png

Дик. Если же самолет вылетает из точки, расположенной в южном полушарии, то конечная точка будет отстоять от исходной более чем на 100 км.

Есть идея! - i115.png

Дэн. Может, ты хочешь поспорить на 2 доллара, что самолет не мог вылететь ниоткуда, кроме Северного полюса?

Дик принял пари и проиграл. Почему?

Есть идея! - i116.png

Предположим, что самолет стартовал из точки, расположенной на параллели А, отстоящей на расстояние 116 км от Южного полюса, и пролетел к югу 100 км.

Есть идея! - i117.png

Пролетев 100 км на восток, он совершит полный оборот вокруг Южного полюса. Пролетев затем 100 км на север, он непременно вернется в исходную точку.

Есть идея! - i118.png

Дик. Ты прав, вот твои 2 доллара.

Дэн. Ставлю еще доллар, что, по-твоему, я не смогу указать других мест на земном шаре, вылетев откуда и пролетев сначала 100 км на юг, затем 100 км на восток и 100 км на север, самолет сможет вернуться в исходную точку. Под «другими местами» я понимаю точки, не лежащие на параллели А и не совпадающие с Северным полюсом.

Есть идея! - i119.png

Дик. Тогда ставлю 50 долларов, что таких точек на земном шаре нет.

Есть идея! - i120.png

Бедный Дик снова проиграл. Какую важную идею он упустил из виду?

Откуда вылетать?

Заключая второе пари, Дик упустил из виду весьма важное обстоятельство: точка, откуда вылетает самолет, может быть выбрана так близко от Южного полюса, что, пролетев 100 км на восток, он опишет вокруг полюса не один оборот, как в предыдущем решении, а два полных оборота. Так возникает новая параллель, все точки которой служат решениями исходной задачи. Аналогичным образом самолет может вылететь из любой точки еще меньшей окружности и, держа курс на восток, совершить три, четыре и т. д. оборота вокруг полюса. При любом целом положительном n можно указать соответствующую параллель, вылетев из любой точки которой и держа курс на восток, самолет совершит n оборотов вокруг полюса. Следовательно, точки, из которых может вылететь самолет, заполняют бесконечно много параллелей, стягивающихся к полюсу,

А вот еще одна навигационная задача, связанная с замечательной кривой на сфере — локсодромой, или линией постоянного курса. Самолет вылетает из точки, расположенной на экваторе, и берет курс на северо-восток. Где закончится его полет, если запасы горючего можно считать неограниченными? Какова длина маршрута и как он выглядит?

Возможно, вы удивитесь, когда узнаете, что маршрут полета имеет вид спирали, пересекающей все меридианы под одним и тем же углом и заканчивающейся на Северном полюсе. Такую кривую правильнее было бы рассматривать как винтовую линию, навитую на сферу, стягивающуюся к Северному полюсу и успевающую описать вокруг полюса бесконечно много витков. Если самолет условно принять за точку, то маршрут, хотя и успевает совершить бесконечно много оборотов вокруг полюса, имеет конечную длину, которая поддается вычислению. Следовательно, поддерживая в полете постоянную скорость, самолет достигнет Северный полюс за конечное время.

При нанесении на плоскую карту форма локсодромы искажается в зависимости от выбора картографической проекции. На меркаторской проекции, известной по карте мира, локсодрома переходит в прямую. Именно поэтому меркаторская проекция находит столь широкое применение в решении навигационных задач. Если судно или самолет следуют постоянным курсом, то, чтобы проложить его на карте, достаточно провести прямую.

А что произойдет, если самолет, взлетев с Северного полюса, возьмет курс на юго-запад? Эта задача обратна предыдущей. Полет, как и прежде, будет происходить по локсодроме, но сказать, где приземлится самолет в конце пути, мы не можем. В этом можно легко убедиться, обратив время: из какой бы точки, расположенной на экваторе, ни вылетел самолет, он, двигаясь вспять, неизменно окажется на Северном полюсе. Если же самолет, достигнув экватора, пересечет его и будет лететь тем же курсом, то локсодрома стянется к Южному полюсу.

15
{"b":"315660","o":1}