Литмир - Электронная Библиотека
Содержание  
A
A

В момент, когда я увидел статью Виттена, я понял, что Битва при чёрной дыре окончена. Квантовая теория поля — это частный случай квантовой механики, а информация в квантовой механике никогда не уничтожается. Что ещё сделали Малдасена и Виттен, так это доказали, не оставив ни тени сомнения, что информация никогда не должна теряться за горизонтом чёрной дыры. Струнные теоретики могли понять это сразу; релятивистам понадобилось немного больше времени. Но война завершилась.

Хотя Битва при чёрной дыре должна была окончиться ещё в начале 1998 года, Стивен Хокинг уподобился тем несчастным солдатам, которые годами скрывались в джунглях, не зная, что военные действия прекратились. Но на этот раз он стал трагической фигурой. Пятидесятишестилетний, уже прошедший пик своей интеллектуальной формы и почти неспособный общаться, Стивен не улавливал сути дела. Уверен, что это не было связано с ограниченностью его интеллекта. Из тех контактов, которые у меня были с ним после 1998 года, стало ясно, что его разум остаётся исключительно острым. Но его физические возможности настолько ослабли, что он оказался почти полностью замкнут в собственной голове. Не имея возможности записывать уравнения и испытывая колоссальные трудности при общении с коллегами, он должен был столкнуться с тем, что не может проделать те вещи, которые обычно выполняют физики, чтобы разобраться в новой, незнакомой им работе. Поэтому Стивен ещё некоторое время продолжал борьбу.

Вскоре после публикации статьи Виттена в Санта-Барбаре состоялась ещё одна конференция, на этот раз чтобы отметить голографический принцип и открытие Малдасены. Послеобеденным докладчиком был Джефф Харвей (Н из CGHS), однако вместо речи он призвал всех исполнить победную песнь «Малдасена», которая поётся и танцуется на манер «Макарены»[153].

Начав со странных бран подвида BPS[154],
Он шёл вперёд, попал в пространство ADS,
И где он только накопал таких чудес?
Э-э-э, Малдасена!
Супер Янг-Миллс стоит, и N его крутая,
А гравитация на сфере как живая,
Но голография теперь всё уравняет.
Э-э-э, Малдасена!
Черна дыра, загадка зла… Где энтропия? Где?
Теперь D-бран подсчёт ведём и энтропии D.
А если врана горяча, ещё и D-free-E.
Э-э-э, Малдасена!
Виват, Хуан, готова М-теория вполне,
Дыру собрали мы из струн — фурынит КХД,
Глюболов спектр только плох, — нас мучает во сне.
Э-э-э, Малдасена!

23

Ядерная физика? Вы шутите!

Скептики отметят, что всё рассказанное мной о свойствах чёрных дыр — от энтропии, температуры и хокинговского излучения до дополнительности чёрных дыр и голографического принципа — это чистая теория без единого грана подтверждающих её экспериментальных данных. Увы, скептики ещё очень долго могут оставаться правы.

Но тут надо сказать, что совершенно неожиданная взаимосвязь между чёрными дырами, квантовой гравитацией, голографическим принципом, с одной стороны, и экспериментальной ядерной физикой — с другой, может раз и навсегда опровергнуть утверждение о том, что эти теории лежат за рамками возможного научного подтверждения. На первый взгляд ядерная физика кажется совершенно бесперспективным местом для проверки таких идей, как голографический принцип и дополнительность чёрных дыр. Ядерная физика давно не находится на переднем краю исследований. Большинство физиков, и я в их числе, полагали, что эта старая область науки исчерпала свой потенциал и уже не сможет научить нас чему-то новому относительно фундаментальных законов природы. С точки зрения современной физики ядра — это что-то вроде зефира: большие рыхлые шары, по большей части пустые внутри. Что они могут нам сказать о физике планковского масштаба? Совершенно неожиданно оказалось, что довольно много.

Струнные теоретики всегда интересовались ядрами. Вся предыстория теории струн была связана с адронами: протонами, нейтронами, мезонами и глюболами. Подобно ядрам, эти частицы большие, рыхлые и состоят из кварков и глюонов. Похоже, что на масштабе, в сто миллиардов миллиардов раз крупнее планковского, природа повторяет саму себя. Математика адронной физики оказалась почти такой же, как математика теории струн. Это кажется совершенно удивительным, если принять во внимание огромную разницу в масштабах: нуклоны могут быть в 1020 раз больше фундаментальных струн и колеблются в 1020 раз медленнее. Как могут эти теории быть одинаковыми или даже отдалённо похожими? Тем не менее в определённом смысле это именно так. И если обычные субатомные частицы в самом деле похожи на фундаментальные струны, почему бы нам не проверять идеи теории струн в ядерных лабораториях? В действительности это уже делается почти сорок лет.

Связь между адронами и струнами — это одна из основ современной физики элементарных частиц, но до самого недавнего времени было невозможно проэкспериментировать с ядерным аналогом физики чёрных дыр. Сейчас ситуация меняется.

За пределами Лонг-Айленда, примерно в сотне километров от Манхэттена, ядерные физики Брукхевенской национальной лаборатории сталкивают тяжёлые атомные ядра и смотрят, что получится в результате. Релятивистский коллайдер тяжёлых ионов RHIC[155] разгоняет ядра золота почти до скорости света, так что при столкновении они дают колоссальный выплеск энергии с температурой в сотни миллионов раз выше, чем на поверхности Солнца. Брукхевенские физики не интересуются ядерным оружием или какими-то ещё ядерными технологиями. Их мотив — чистое любопытство, изучение свойств новой формы материи. Как ведёт себя это горячее ядерное вещество? Является ли оно газом? Жидкостью? Остаётся ли оно в связанном состоянии или немедленно испаряется, распадаясь на отдельные частицы? Вылетают ли оттуда струи чрезвычайно энергичных частиц?

Как я уже сказал, ядерная физика и квантовая гравитация действуют в совершенно несопоставимых масштабах, но какая же тогда между ними может быть взаимосвязь? Лучшая известная мне аналогия связана с одним из худших фильмов, старым ужастиком эпохи драйв-ин кинотеатров[156]. В центре сюжета были мухи-монстры. Я не знаю, как делался этот фильм, но предполагаю, что снималась обычная домашняя муха, которую потом увеличивали так, чтобы она занимала весь экран. Изображение воспроизводилось в замедленном показе, из-за чего муха воспринималась как отвратительная огромная птица. Результат был ужасен, но если вернуться к нашей теме, то это почти идеальная иллюстрация связи между гравитонами и глюболами. И те и другие — замкнутые струны, но гравитон гораздо меньше и быстрее глюбола — примерно в 1020 раз меньше и быстрее. Кажется, адроны очень похожи на образы фундаментальных струн, только раздутые и замедленные, — не в сотни раз, как мухи, а в фантастические 1020 раз.

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - i_220.jpg

Так что если мы не можем для порождения чёрных дыр сталкивать с колоссальной энергией частицы планковского размера, то, возможно, у нас получится сталкивать их раздутые версии — глюболы, мезоны или нуклоны, — так чтобы создать увеличенную версию чёрной дыры. Но погодите, не потребуется ли для этого громадное количество энергии? Нет, не потребуется, а чтобы понять почему, надо вспомнить описанную в главе 16 контринтуитивную связь между размером и массой: маленькое — тяжёлое, большое — лёгкое. Тот факт, что явления ядерной физики протекают в несопоставимо больших масштабах, чем те, что характерны для теории фундаментальных струн, означает, что эти явления нуждаются в гораздо менее концентрированной энергии, занимающей гораздо больший объём. Если подставить числа и выполнить расчёты, то нечто, очень похожее на раздутую и заторможенную чёрную дыру, должно, оказывается, возникать при обычном столкновении ядер на RHID.

вернуться

153

«Макарена» — популярная в середине 1990-х латиноамериканская танцевальная мелодия.

вернуться

154

BPS — особое свойство D-бран, названное по инициалам его первооткрывателей — Богомольного, Прасада и Зоммерфильда.

вернуться

155

Полное англоязычное название: Relativistic Heavy Ion Collider. — Прим. перев.

вернуться

156

Драйв-ин — кинотеатры на открытом воздухе, где фильмы смотрят прямо из припаркованной машины. — Прим. перев.

82
{"b":"251271","o":1}