Литмир - Электронная Библиотека
Содержание  
A
A

Буквальное значение слова «геометрия» — измерение Земли. Ирония в том, что если бы Евклид реально озаботился измерением треугольников на земной поверхности, он бы обнаружил, что евклидова геометрия не работает. Дело в том, что земная поверхность является сферой[28], а не плоскостью. В сферической геометрии, конечно, есть точки и углы, но далеко не очевидно, что в ней есть нечто подобное прямым линиям. Посмотрим, удастся ли придать какой-то смысл словам «прямая линия на сфере».

Привычный способ описания прямой линии в евклидовой геометрии состоит в том, что это кратчайший путь между двумя точками. Если я захочу построить прямую линию на футбольном поле, то вобью в землю два колышка, соединю их леской и натяну её как можно сильнее. Натягивание лески гарантирует, что линия будет самой короткой из возможных.

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - i_022.jpg

Этот принцип кратчайшего пути между двумя точками можно легко распространить на сферу. Допустим, надо найти кратчайший путь между Москвой и Рио-де-Жанейро. Нам понадобится глобус, две кнопки и упругая нить. Воткнув кнопки в Москву и Рио, можно натянуть нить вдоль поверхности глобуса и определить кратчайший маршрут. Такие кратчайшие маршруты, подобные экватору и меридианам, называют большими кругами. Есть ли смысл называть их прямыми линиями в сферической геометрии? Да неважно, как мы их назовём. Важно то, как логически соотносятся между собой точки, углы и линии.

Будучи кратчайшим путём между двумя точками, такие линии являются в некотором смысле наиболее прямыми из возможных линий на сфере. Корректное математическое название для таких путей — геодезические. Если на обычной плоскости геодезические являются обычными прямыми линиями, то на сфере геодезические — это большие круги.

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - i_023.jpg

Большие круги на сфере

Получив эту сферическую замену прямых линий, мы можем перейти к конструированию треугольников. Отметим на сфере три точки, скажем Москву, Рио и Сидней. Затем нарисуем геодезические, попарно соединяющие эти точки: геодезическую Москва-Рио, геодезическую Рио-Сидней и, наконец, геодезическую Сидней-Москва. В результате получится сферический треугольник.

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - i_024.jpg

Сферический треугольник

В планиметрии, если сложить углы любого треугольника, получится ровно 180 градусов. Но если внимательно присмотреться к сферическому треугольнику, то видно, что его стороны выпячиваются наружу, что делает углы бо́льшими, чем они были бы на плоскости. В результате сумма углов сферического треугольника всегда больше 180 градусов. Про поверхность, на которой треугольники обладают таким свойством, говорят, что она имеет положительную кривизну.

Могут ли существовать поверхности противоположного свойства, а именно чтобы сумма углов треугольника была меньше 180 градусов? Пример такой поверхности — седло. Седловидные поверхности имеют отрицательную кривизну; геодезические, образующие треугольник на поверхности отрицательной кривизны, не выпячиваются, а, наоборот, втягиваются.

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - i_025.jpg

Итак, независимо от того, способен наш ограниченный мозг визуализировать искривлённое трёхмерное пространство или нет, мы знаем, как экспериментально проверить его на кривизну. Ключом служат треугольники. Выберите любые три точки в пространстве, как можно туже натяните между ними нити, чтобы образовался трёхмерный треугольник. Если сумма углов составляет 180° для любого такого треугольника, то пространство плоское, если нет — искривлённое.

Могут существовать геометрии намного более сложные, чем сферы и сёдла, — геометрии с беспорядочными холмами и долинами, имеющие области как с положительной, так и с отрицательной кривизной. Но правило для построения геодезических всегда остаётся простым. Представьте, что вы ползёте по такой поверхности и всё время держите нос прямо, никогда не поворачивая головы. Не оглядывайтесь; не заботьтесь, откуда вы пришли и куда направляетесь; просто тупо ползите вперёд. Ваш путь окажется геодезической.

Представьте себе человека в инвалидном кресле, пытающегося сориентироваться в пустыне среди песчаных дюн. Имея ограниченный запас воды, он должен выбраться оттуда как можно быстрее. Округлые холмы, седловидные перевалы и глубокие долины образуют участки ландшафта с положительной и отрицательной кривизной, и в целом совершенно не очевидно, куда лучше всего направить кресло. Человек считает, что высокие холмы и глубокие долины будут замедлять его движение, так что поначалу решает объезжать их. Механизм управления креслом прост: если замедлить одно колесо относительно другого, то кресло поворачивает в этом направлении.

Однако через несколько часов человек начинает подозревать, что проезжает мимо тех же элементов рельефа, где уже был ранее. Попытки управления креслом привели к опасному случайному блужданию. Теперь он понимает, что лучшей стратегией было движение абсолютно прямо вперёд, не поворачивая ни влево, ни вправо. «Езжай прямо, куда глаза глядят», — говорит он себе. Но как убедиться, что не сбился с курса?

Ответ скоро становится очевидным. У кресла есть механизм, который фиксирует два колеса друг относительно друга, так что они крутятся как единая гантель. Зафиксировав колёса таким образом, он отправляется кратчайшим путём к краю пустыни.

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - i_026.jpg

В каждой точке траектории путешественник движется по прямой линии, но в целом его путь выглядит сложной вьющейся кривой. Тем не менее она настолько пряма и коротка, насколько это возможно.

Вплоть до девятнадцатого столетия математики не приступали к изучению новых типов геометрии с альтернативными аксиомами. Лишь немногие, такие как Георг Фридрих Бернхард Риман, задумывались над той возможностью, что «реальная» геометрия — геометрия реального пространства — может быть не строго евклидовой. Но только Эйнштейн первым отнёсся к этой идее серьёзно. В общей теории относительности геометрия пространства (или, более корректно, пространства-времени) становится вопросом для экспериментаторов, а не для философов или даже математиков. Математики могут сказать, какие типы геометрии возможны, но только измерения могут определить «истинную» геометрию пространства.

Разрабатывая общую теорию относительности, Эйнштейн опирался на математические работы Римана, который рассматривал геометрии, выходящие за рамки сферических и седловидных поверхностей: пространства с ямами и буераками, в одних местах искривлённые положительно, в других отрицательно; с геодезическими, проходящими по этим особенностям и между ними по кривым неправильным маршрутам. Риман рассматривал только трёхмерное пространство, но Эйнштейн и его современник Герман Минковский ввели нечто совершенно новое: время как четвёртое измерение. (Попробуйте это визуализировать. Если получится, значит, у вас очень необычный мозг.)

Специальная теория относительности

Ещё до того как Эйнштейн задумался об искривлённом пространстве, Минковскому пришла в голову идея о том, что время и пространство следует объединить в форме четырёхмерного пространства-времени. Он выразился весьма элегантно, если не сказать торжественно:

«Отныне пространство само по себе и время само по себе обречены оставаться в тени, и только своего рода их союз сохранит независимую реальность»[29].

Плоская, или неискривлённая, версия пространства-времени стала называться пространством Минковского.

вернуться

28

Я, конечно, имею в виду идеализированную, совершенно круглую Землю.

вернуться

29

Минковский первым осознал, что новая четырёхмерная геометрия была подходящей средой для эйнштейновской специальной теории относительности. Данная цитата — из его доклада «Пространство и время», представленного на 80-й ассамблее немецких естествоиспытателей и врачей 21 сентября 1908 года.

10
{"b":"251271","o":1}