Литмир - Электронная Библиотека
Содержание  
A
A

.I

.ta 1i

function: func name() stmt

procedure: proc name() stmt

.R

.DE

.I name

may be the name of any variable \(em built-in functions are excluded.

The definition, up to the opening brace or statement,

must be on one line, as with the

.I if

statements above.

.PP

Unlike C,

the body of a function or procedure may be any statement, not

necessarily a compound (brace-enclosed) statement.

Since semicolons have no meaning in @hoc@,

a null procedure body is formed by an empty pair of braces.

.PP

Functions and procedures may take arguments, separated by commas,

when invoked. Arguments are referred to as in the shell:

.ix [hoc] arguments

.IT $3

refers to the third (1-indexed) argument.

They are passed by value and within functions

are semantically equivalent to variables.

It is an error to refer to an argument numbered greater than the

number of arguments passed to the routine. The error checking

is done dynamically, however, so a routine may have variable numbers

of arguments if initial arguments affect the number of arguments

to be referenced (as in C's @printf@).

.PP

Functions and procedures may recurse, but the stack has limited depth

(about a hundred calls). The following shows a

.I

hoc

definition of Ackermann's function:

.ix Ackermann's~function

.DS

.ft CW

.ix [ack]~function

.S $ "hoc

.S "func ack() {

.S " if ($1 == 0) return $2+1

.S " if ($2 == 0) return ack($1-1, 1)

.S " return ack($1-1, ack($1, $2-1))

.S "}

.S "ack(3, 2)

 29

.S "ack(3, 3)

 61

.S "ack(3, 4)

hoc: stack too deep near line 8

\&...

.ft

.DE

.bp

.NH

Examples

.PP

Stirling's~formula:

.ix Stirling's~formula

.EQ

n! ~\(ap~ sqrt {2n pi} (n/e) sup n (1+ 1 over 12n )

.EN

.DS

.ft CW

.S $ hoc

.S "func stirl() {

.S " return sqrt(2*$1*PI) * ($1/E)"$1*(1 + 1/(12*$1)) .S "}

.S "stirl(10)

 3628684.7

.S stirl(20)

 2.4328818e+18

.ft R

.DE

.PP

Factorial function, @n!@:

.ix [fac]~function

.DS

. S "func fac() if ($1 <= 0) return 1 else return $1 * fac($1-1)

.ft R

.DE

.PP

Ratio of factorial to Stirling approximation:

.DS

.S "i = 9

.S "while ((i = i+1) <= 20) {

.S \ \ \ \ \ \ \ \ print\ i,\ "\ \ ",\ fac(i)/stirl(i),\ "\en"

.S "} .ft CW

10 1.0000318

11 1.0000265

12 1.0000224

13 1.0000192

14 1.0000166

15 1.0000146

16 1.0000128

17 1.0000114

18 1.0000102

19 1.0000092

20 1.0000083

.ft

.DE

3.7.14

hoc.y

%{

#include "hoc.h"

#define code2(c1,c2) code(c1); code(c2)

#define code3(c1,c2,c3) code(c1); code(c2); code(c3)

%}

%union {

 Symbol *sym; /* symbol table pointer */

 Inst *inst; /* machine instruction */

168
{"b":"248117","o":1}