Литмир - Электронная Библиотека
Содержание  
A
A
Моделирование рассуждений. Опыт анализа мыслительных актов - p096_1.png

Рис. 23.

Какой смысл мы вложили в слово «аналогичное», когда говорили о преобразованиях? По крайней мере, двоякий. Во-первых, мы предположили, что элементы, из которых состоят слова и рисунки, как-то соответствуют друг другу. Например, елочки и фигурки из третьей строки ассоциируются у нас с буквами, из которых состоят слова, а буквы важны не сами по себе, а по тому месту, которое они занимают в словах. Во-вторых, мы предполагаем, что сохраняется суть преобразования, хотя элементы, с которыми преобразование оперирует, могут быть другими.

Эти соображения помогают уловить расплывчатый смысл, вкладываемый людьми в понятие аналогии. На рис. 24 показано три преобразования для треугольника Т. Преобразование

Моделирование рассуждений. Опыт анализа мыслительных актов - upsilon.png
можно назвать обобщением. При переходе от треугольника к многоугольнику наследуются только те геометрические свойства, которые верны для любых многоугольников. Сам треугольник по отношению к множеству многоугольников представляет некоторую конкретизацию. На рис. 24 преобразованием конкретизации служит
Моделирование рассуждений. Опыт анализа мыслительных актов - sigma.png
, переводящее произвольный треугольник в его частный вид – прямоугольный треугольник. А вот преобразование
Моделирование рассуждений. Опыт анализа мыслительных актов - tau.png
можно назвать преобразованием по аналогии. Треугольная пирамида сохраняет многие свойства треугольника, но является не плоской, а объемной фигурой.

Моделирование рассуждений. Опыт анализа мыслительных актов - p097_1.png

Рис. 24.

Первая попытка формализовать понятие рассуждения по аналогии была предпринята Лейбницем. В своем сочинении «Фрагменты логики» он ввел понятие пропорции для отношения аналогии. Пропорция Лейбница формулируется следующим образом: «Вещь А так относится к вещи В, как вещь А’ к вещи В’». Обычно пропорцию Лейбница представляют в виде диаграммы:

Моделирование рассуждений. Опыт анализа мыслительных актов - p098_1.png

Для иллюстрации того, как может быть использована диаграмма Лейбница, рассмотрим семантическое пространство Осгуда. Это пространство, которое американский психолог Чарльз Осгуд строил экспериментально, проводя опыты с людьми, должно было, по его мнению, характеризовать организацию размещения информации в памяти человека. Мы не будем здесь останавливаться на способе его построения. В комментарии к данному разделу имеется некоторая информация по этому вопросу, а в библиографии заинтересовавшиеся читатели могут найти нужные работы. Скажем только, что упрощенное пространство Осгуда является обычным трехмерным евклидовым пространством. Близость по метрике этого пространства характеризует семантическую близость понятий, фактов и утверждений, а рассуждения, проведенные в пространстве относительно группы элементов, могут проецироваться по аналогии на группы, состоящие из семантически близких элементов.

Проиллюстрируем эту мысль, взяв «кусок» пространства Осгуда, относящийся к понятиям, используемым для указания родства. То, что они в семантическом пространстве расположены компактно, было доказано экспериментально. Этот «кусок» пространства Осгуда показан на рис. 25. Для удобства введена система координат и сделано такое преобразование, чтобы все точки, соответствующие интересующим нас понятиям, оказались лежащими в вершинах единичного куба (правомочность такого преобразования в пространстве Осгуда мы тут не обсуждаем).

Моделирование рассуждений. Опыт анализа мыслительных актов - p099_1.png

Рис. 25.

Пусть даны три элемента пропорции Лейбница А, А’ и В. И необходимо узнать элемент В’. Для рассматриваемого примера примем следующий способ нахождения координат понятия В’: b’i=bi+а’iаi где i=1,2,3. Пусть, например, нас интересует пропорция Сын:Дочь=Дядя:? Для определения неизвестного члена пропорции произведем необходимые вычисления, используя координаты понятий, отмеченные на рис. 25. Получим b’1=0+1–0=1; b’2=1+0–0=1; b’3=0+1–0=1. Таким образом, понятие В’ имеет координаты (1,1,1). Этим координатам соответствует понятие «Тетя».

Для дальнейшего необходимо уточнить понятия «похожесть» и «аналогия», использованные в диаграмме для пропорции Лейбница, и придать им по возможности строгий смысл. Сделать это можно следующим образом. Выберем некоторый алгебраический язык для описания A и В, который обозначим

Моделирование рассуждений. Опыт анализа мыслительных актов - alg_lang.png
1 и некоторый (вообще говоря, другой) алгебраический язык для описания А’ и В’, который обозначим
Моделирование рассуждений. Опыт анализа мыслительных актов - alg_lang.png
2. Переход от A к В и от A’ к B’ будем интерпретировать как преобразование соответствующих описаний в языках
Моделирование рассуждений. Опыт анализа мыслительных актов - alg_lang.png
1 и
Моделирование рассуждений. Опыт анализа мыслительных актов - alg_lang.png
2. Поскольку выбранные языки являются алгебраическими, то в них выделены элементы и операции, определённые над этими элементами. Учитывая дальнейший пример, будем считать, что в качестве элементов языков
Моделирование рассуждений. Опыт анализа мыслительных актов - alg_lang.png
1 и
Моделирование рассуждений. Опыт анализа мыслительных актов - alg_lang.png
2 выступают некоторые изображения или их совокупности, связанные отношениями из заданного набора двуместных отношений. А операции состоят в том, что над элементами можно совершать различные геометрические преобразования, определяемые их движениями. Это приводит к изменению отношений между элементами, входящими в анализируемые совокупности.

Чтобы все сказанное стало понятнее, рассмотрим конкретный пример. На рис. 26 показана серия изображений, соответствующая пропорции Лейбница, в которой, как всегда, надо восстановить недостающее звено, т.е. осуществить (если это возможно) вывод по аналогии. Для описания изображений введем языки

Моделирование рассуждений. Опыт анализа мыслительных актов - alg_lang.png
1 и
Моделирование рассуждений. Опыт анализа мыслительных актов - alg_lang.png
2. В языке
Моделирование рассуждений. Опыт анализа мыслительных актов - alg_lang.png
1 в качестве элементов возьмем изображение солнца s, и человечка m. В качестве отношений будем рассматривать отношения R1 – «быть слева вверху» и R2 – «быть справа вверху». Тогда ситуация А может быть описана как sR1m. В качестве операций в
Моделирование рассуждений. Опыт анализа мыслительных актов - alg_lang.png
1 будем использовать перестановку объектов относительно друг друга O1 и вращение на 180° по часовой стрелке O2. Тогда преобразование F можно описать как O1(s,m); O2(m). В результате этого возникает ситуация B, описание которой в языке
Моделирование рассуждений. Опыт анализа мыслительных актов - alg_lang.png
1 выглядит как sR2(O2(m)).

Моделирование рассуждений. Опыт анализа мыслительных актов - p100_1.png
24
{"b":"22225","o":1}