Этот гигантский круг возможностей исключает антропоморфизм как законный способ мышления.
2. Предсказание и устройство.
Мы не можем спрашивать наш собственный мозг о нечеловеческих процессах оптимизации – ни о насекомоглазых монстрах, ни о естественном отборе, ни об искусственном интеллекте. И как же мы будем продолжать? Как мы можем предсказать, что ИИ будет делать? Я нарочно задаю этот вопрос в форме, которая делает его труднообрабатываемым. При такой постановке проблемы невозможно предсказать, будет ли произвольная вычислительная система выполнять хоть какие-нибудь функции ввода-вывода, включая, например, простое умножение (Rice, 1953). Так как же возможно, что компьютерные инженеры могут создавать микросхемы, которые надёжно выполняют вычисления? Потому что люди-инженеры нарочно используют те проекты, которые они могут понять.
Антропоморфизм заставляет людей верить, что они могут делать предсказания, не имея никакой другой информации, кроме как о самом факте «интеллектуальности» (intelligence) чего-то – антропоморфизм продолжает генерировать предсказания, не взирая ни на что, в то время как ваш мозг автоматически ставит себя на место этой самой «интеллектуальности». Это может быть одним из факторов вызывающей замешательство истории ИИ, которая происходит не из трудности ИИ как такового, но из загадочной лёгкости обретения ошибочной веры в то, что некий данный дизайн ИИ сработает.
Для того, чтобы сделать утверждение о том, что мост выдержит вес автомобилей в 30 тонн, гражданские инженеры имеют два оружия: выбор изначальных условий и запас прочности для безопасности. Им нет необходимости предсказывать, может ли выдержать вес в 30 тонн произвольная конструкция, но только проект данного конкретного моста, относительно которого они делают это заявление. И хотя это показывает с лучшей стороны инженера, который может вычислить точный вес, который мост может выдержать, также приемлемо вычислить, что мост выдержит автомобили не менее, чем в 30 тонн – хотя для того, чтобы доказать это расплывчатое утверждение строго, может потребоваться большая часть того теоретического понимания, которое входит в точное вычисление.
Гражданские инженеры придерживаются высоких стандартов в предсказании того, что мосты выдержат нагрузку. Алхимики прошлого придерживались гораздо более низких стандартов в предсказании того, что последовательность химических реагентов трансформирует свинец в золото. Какое количество свинца в какое количество золота? Каков причинный механизм этого процесса? Вполне понятно, почему исследователь-алхимик хотел золото больше, чем свинец, но почему данная последовательность реагентов превращает свинец в золото, а не золото в свинец или свинец в воду?
Ранние исследователи ИИ полагали, что искусственная нейронная сеть из слоёв пороговых устройств, обученная посредством обратного распространения, будет «интеллектуальной» (intelligent). Использованное при этом мышление, обусловленное результатом (wishful thinking), ближе к алхимии, чем к гражданском строительству. Магия входит в список человеческих универсалий Дональда Брауна (Brown, 1991); наука – нет. Мы инстинктивно не понимаем, что алхимия не работает. Мы инстинктивно не различаем строгие рассуждения и хорошее рассказывание историй. Мы инстинктивно не замечаем ожидание положительных результатов, висящее в воздухе. Человеческий вид возник посредством естественного отбора, функционирующего посредством неслучайного сохранения случайных мутаций.
Один из путей к глобальной катастрофе – когда кто-то нажимает кнопку, имея ошибочное представление о том, что эта кнопка делает – если ИИ возникнет посредством подобного сращения работающих алгоритмов в руках исследователей, не имеющего глубокого понимания того, как вся система работает. Нет сомнения, они будут верить, что ИИ будет дружественным, без ясного представления о точном процессе, вовлечённом в создание дружественного поведения, или какого-либо детального понимания того, что они имеют в виду под дружественностью. Несмотря на то, что ранние исследователи ИИ имели сильно ошибочные, расплывчатые ожидания об интеллектуальности своих программ, мы можем представить, что этим исследователям ИИ удалось сконструировать интеллектуальную программу, но помимо того они имели сильно ошибочные, расплывчатые ожидания относительно дружественности своих программ.
Незнание того, как сделать дружественный ИИ, не смертельно само по себе, в том случае, если вы знаете, что вы не знаете. Именно ошибочная вера в то, что ИИ будет дружественным, означает очевидный путь к глобальной катастрофе.
3. Недооценка силы интеллекта.
Мы склонны видеть индивидуальные различия вместо общечеловеческих качеств. Поэтому, когда кто-то говорит слово «интеллект», мы думаем скорее об Эйнштейне, чем о людях. Индивидуальные различия в человеческом интеллекте имеют стандартное обозначение, известные как G-фактор Шпеермана (Spearman's G-factor), этот фактор представляет собой довольно спорную интерпретацию твёрдых экспериментальных фактов о том, что различные тесты интеллекта высоко коррелируют друг с другом, а также с результатами в реальном мире, такими, как суммарный доход за жизнь (Jensen, 1999). G-фактор Шпеермана является статистической абстракцией индивидуальных различий в интеллекте между людьми, которые, как вид, гораздо более интеллектуальны, чем ящерицы. G-фактор Шпеермана выводится из миллиметровых различий в высоте среди представителей вида гигантов.
Мы не должны путать G-фактор Шпеермана с общечеловеческой интеллектуальностью, то есть нашей способностью обрабатывать широкий круг мыслительных задач, непостижимых для других видов. Общая интеллектуальность – это межвидовое различие, комплексная адаптация и общечеловеческое качество, обнаруживаемое во всех известных культурах. Возможно, ещё нет академического согласия о природе интеллектуальности, но нет сомнения в существовании, или силе, этой вещи, которая должна быть объяснена. Есть что-то такое в людях, что позволяет нам оставлять следы ботинок на Луне.
Но слово «интеллектуальность» обычно вызывает образы голодающего профессора с IQ в 160 единиц и миллиардера-главу компании с IQ едва ли в 120. В действительности, существуют различия в индивидуальных способностях, помимо качеств из «книжек про карьеру», которые влияют на относительный успех в человеческом мире: энтузиазм, социальные навыки, музыкальные таланты, рациональность. Отметьте, что каждый из названных мною факторов является когнитивным. Социальные навыки присущи мозгу, а не печени. И – шутки в сторону – вы не обнаружите множества глав компаний, ни даже профессоров академии, которые были бы шимпанзе. Вы не обнаружите ни прославленных мыслителей, ни художников, ни поэтов, ни лидеров, ни опытных социальных работников, ни мастеров боевых искусств, ни композиторов, которые были бы мышами. Интеллектуальность – это основание человеческой силы, мощь, которая наполняет другие наши искусства.
Опасность перепутать общую интеллектуальность с g-фактором состоит в том, что это ведёт к колоссальной недооценке потенциального воздействия ИИ. (Это относится к недооценке потенциально хороших воздействий, равно как и плохих воздействий.) Даже фраза «трансгуманистический ИИ» или «искусственный суперинтеллект» по-прежнему может создавать впечатление о «ящике с книгами как сделать карьеру»: ИИ, который реально хорош в когнитивных задачах, обычно ассоциируется с «интеллектуальностью», подобной шахматам или абстрактной математике. Но не со сверхчеловеческой убедительностью, или со способностью гораздо лучше, чем люди, предсказывать и управлять человеческими институтами, или нечеловечески умом в формулировании длительных стратегий. Так что, может, нам следует подумать не об Эйнштейне, а о политическом и дипломатическом гении 19 века Отто фон Бисмарке? Но это только малая часть ошибки. Весь спектр от деревенского идиота до Эйнштейна, или от деревенского идиота до Бисмарка, уменьшается в маленькую точку на отрезке между амёбой и человеком.