Литмир - Электронная Библиотека
Содержание  
A
A

Теперь перейдем к определению «вероятности p при данном О», которую мы обозначим как «W(0, p)». Определение следующее: W (О, p) есть предел Нn(0, p), по мере того как n неограниченно увеличивается.

Это определение может быть значительно упрощено с помощью небольшого использования математической логики. Во-первых, нет необходимости иметь две последовательности, так как предполагается, что обе являются рядами (progressions) и имеется, следовательно, взаимно-однозначное соответствие их членов. Если это соответствие есть S, то сказать, что определенный член у принадлежит к классу p, равнозначно тому, что сказать, что соответствующий х принадлежит к классу членов, имеющих отношение S к тому или другому из членов P. Например, пусть S есть отношение жены к мужу, тогда если у есть женатый мужчина, ax — его жена, то утверждение, что у есть правительственный чиновник, является истинным, и только в том случае, если х есть жена правительственного чиновника.

Во-вторых, нет никакого преимущества в принятии случая, в котором не все х принадлежат к классу О. Определение применимо только в том случае, если бесконечное число членов х принадлежит к классу О, в этом случае те х, которые принадлежат к О, образуют ряд, а остальные могут быть отброшены. Таким образом, мы удержим все существенное в определении Рейхенбаха, если подставим следующее.

Пусть О будет рядом, а a каким-либо классом, из числа членов которого в важных случаях имеются члены, которые в последовательности О являются последующими за любым данным членом. Пусть m будет число членов а среди первых n членов О. Тогда W(О, а) определяется как предел m/n, когда n неограниченно возрастает.

Возможно, по недосмотру Рейхенбах говорит, как если бы понятие вероятности было применимо только к бесконечным рядам и не было применимо к конечным класса. Я не могу думать, что он имел это в виду. Человеческая раса, например, есть конечный класс, и мы хотим применить вероятность к статистике жизни, что было бы невозможно согласно букве определения. Психологически, когда Рейхенбах говорит о пределе для n-бесконечности, он думает о предел как некотором числе, к которому легко приблизиться всякий раз, когда n с эмпирической точки зрения является большим, то есть когда оно недалеко от того максимума, который наши средства наблюдения позволяют нам достичь. У него есть аксиома или постулат о том, что, когда есть такое число для каждого большого доступного наблюдению n, оно приблизительно равно пределу для n-бесконечности. Это нелепая аксиома не только потому, что она произвольна, но и потому, что большинство рядов, с которыми нам приходится иметь дело вне чистой математики не являются бесконечными; в самом деле, можно сомневаться, являются ли таковыми какие-либо из них. Мы привыкли считать пространство-время непрерывным, что предполагает существование бесконечных рядов; но это предположение не имеет иного основания, кроме математического удобства.

Для того чтобы сделать теорию Рейхенбаха насколько возможно более адекватной, я буду исходить из того, что там, где речь идет о конечных классах, должно быть сохранено определение, данное в предшествующей главе, и что новое определение имеет целью только расширение, позволяющее нам применять вероятность к бесконечным классам. Таким образом, его Нn(0, p) будет вероятностью, но приложимой только к первым n членам ряда.

То, что Рейхенбах постулирует в качестве своей формы индукции, есть нечто вроде следующего. Допустим, что мы сделали N наблюдений в отношении корреляции О и p, так что мы в состоянии вычислить Нn (О, p) для всех значений n до n=N, и допустим, что во всей последней половине значений n вероятность Hn(О, p) всегда отличается от определенной дроби p меньше, чем на е, где e — мало. Тогда мы утверждаем, что, сколько бы мы ни увеличивали n, вероятность Нn(0, p) будет все-таки находиться в этих узких границах, и, следовательно, W (О, p), являющееся пределом для n-бесконечности, будет также лежать в этих границах. Без этого допущения мы не можем иметь эмпирического свидетельства в отношении предела для n-бесконечности, и вероятности, для которых, определение специально предназначено, должны оставаться неизвестными.

В защиту теории Рейхенбаха перед лицом вышеупомянутых затруднений можно высказать два соображения. Во-первых, он может утверждать, что нет необходимости предполагать, что n беспредельно стремится к бесконечности; для всех практических целей достаточно, если n будет очень большим. Допустим, например, что мы занимаемся статистикой жизни. Для страховой компании не имеет значения, что произойдет со статистикой, если она будет продолжена на следующие десять тысяч лет; ее могут касаться самое большее следующие сто лет. Если, собрав статистические данные, мы предполагаем, что частоты останутся приблизительно теми же самыми даже тогда, когда мы соберем в десять раз больше данных, чем мы собрали, то этого будет достаточно почти для всех практических целей. Рейхенбах может сказать, что, когда он говорит о бесконечности, он пользуется удобной математической стенографией, имея в виду только «гораздо больше, чем мы до сих пор исследовали». Он может сказать, что этот случай совершенно аналогичен случаю эмпирического определения скорости. Теоретически скорость может быть определена только, если нет предела малости измеряемых отрезков пространства и времени; в практике, поскольку такой предел имеется, мгновенная скорость никогда не может быть известна даже приблизительно. Правда, мы можем узнать с достаточно большой точностью среднюю скорость на протяжении короткого промежутка времени. Но даже если мы предположим постулат непрерывности, средняя скорость на протяжении, скажем, секунды не дает абсолютно никакого указания на мгновенную скорость в данный момент в интервале этой секунды. Все движение может состоять из периодов покоя, разделенных моментами бесконечно большой скорости. Но даже и помимо этой крайней гипотезы и даже если мы допустим непрерывность в математическом смысле, любая конечная мгновенная скорость несовместима с какой-либо конечной средней скоростью на протяжении конечного интервала времени — как бы он короток ни был, — содержащего этот момент. Для практических целей, однако, это не имеет значения. За исключением таких немногих явлений, как взрывы, если мы принимаем мгновенную скорость в любой момент на протяжении очень короткого измеримого интервала времени как приблизительно среднюю скорость в течение этого интервала, то законы физики оправдываются. «Мгновенная скорость» поэтому может рассматриваться не иначе, как удобная математическая фикция.

Подобным же образом Рейхенбах может сказать, когда он говорит о пределе частоты, когда n бесконечно, что он имеет в виду только актуальную частоту для очень больших чисел, или, скорее, эту частоту с небольшим запасом ошибки. Бесконечное и бесконечно малое одинаково ненаблюдаем и, следовательно (как он может сказать), одинаково не имеют значения для эмпирического знания.

Я склонен признать справедливость этого ответа. Я только сожалею, что это не выражено явно в книге Рейхенбаха; я думаю тем не менее, что он должен был это иметь в виду.

Второе соображение в пользу его теории — то, что она применима как раз к тем случаям, в которых мы хотим воспользоваться аргументами вероятности. Мы испытываем желание воспользоваться этими аргументами, когда имеем некоторые данные, касающиеся определенного будущего события, но которых недостаточно, чтобы определить его характер в некотором интересующем нас отношении. Моя смерть, например, является событием будущего, и если я страхую свою жизнь, то я могу испытывать желание узнать, какое существует свидетельство, касающееся вероятности его осуществления в том или ином данном году. В таком случае мы всегда имеем некоторое число индивидуальных фактов, записанных в виде последовательности, и предполагаем, что частоты, обнаруженные до сих пор, будут более или менее продолжать оставаться такими же. Или возьмем азартную игру, в которой и возник весь этот вопрос. Мы не интересуемся тем простым фактом, что имеется 36 возможных результатов бросаний с двумя костями. Мы интересуемся тем фактом (если это факт), что на протяжении длинной последовательности бросаний каждая из 36 возможностей будет осуществляться приблизительно одинаковое число раз. Этот факт не вытекает из одного лишь существования 36 возможностей. Когда вы встречаете незнакомого человека, есть только две возможности: одна та, что его зовут Эбинизер Уилкс Смит, другая — что его зовут не так. Но на протяжении долгой жизни, в течение которой я встретил множество незнакомых людей, я только один раз столкнулся с реализацией первой возможности. Чисто математическая теория, которая только перечисляет возможные случаи, лишена практического интереса, если мы не знаем, что каждый возможный случай осуществляется приблизительно с одинаковой или с какой-то известной частотой. А это, если мы рассматриваем не логическую схему, а события, может быть известным только через действительную статистику, использование которой — как я сказал бы — должно идти более или менее в соответствии с теорией Рейхенбаха.

108
{"b":"136447","o":1}