ИСЧИСЛЕНИЕ
В марте 1666 года старейшины университета, убедившись в том, что «слава господу, колледжи не подверглись заражению чумой», послали уведомления членам колледжей и студентам с предложением вернуться к занятиям.
Мать Анна прокалила письмо над каминным огнём, затем повесила выветриваться в чулане на бельевой верёвке, потом проколотила меж двумя плоскими камнями, и лишь затем отдала Исааку.
Ко дню благовещенья, в марте 1666 года, Ньютон прибыл в Кембридж. К его удивлению, несколько героев — добровольных стражей Тринити-колледжа, оставшихся в его древних стенах, гулких коридорах и пустых комнатах, оставшихся на верную смерть, защитившись лишь невообразимым количеством профилактического средства, сильно подкреплённого хересом, — не погибли ни от чумы, ни от своего противочумного снадобья.
Тринити заполнялся, но о занятиях никто не думал. Голландские корабли стояли на Темзе и угрожали Лондону. Предсказания кометы продолжали сбываться, а Ньютон в это время заканчивал две свои математические статьи.
В июне, в связи с новой чумной волной Ньютон снова уехал в Вулсторп и пробыл там до конца апреля 1667 года. Студенты разъехались по всей стране, те, кто побогаче, — в родовые имения в деревенской глуши, те, кто победнее, — в окрестные кембриджские деревни, под наблюдение тьюторов. Считалось, что занятия тем самым не прекращены. Пуллейн не настаивал, чтобы Ньютон был с ним, и Исаак с радостью уехал в Вулсторп.
В сентябре до Вулсторпа донеслись вести о новом несчастье — Большом лондонском пожаре. Первые искры его блеснули в доме королевского булочника в Пудинговом переулке недалеко от теперешнего Лондонского моста. Дом вспыхнул, как вязанка хвороста, — и это было естественно, ибо он был полон хвороста для поддержания огня в печах. Огонь стал распространяться по городу. Все были убеждены, что это козни иностранцев: Англия воевала с Голландией, ревниво смотрела на Испанию и подозревала во всём Францию. В городе могло найтись множество чьих-нибудь тайных агентов. Католики могли бы работать на Францию, а «круглоголовые» — на Голландию. Огонь тем временем быстро распространялся. Лишь собор святого Павла, самое высокое здание Европы, стоял, пока не тронутый пламенем. Но в конце концов не устоял и собор.
В этом гигантском пожаре погибло всего шестеро; сгорело тринадцать тысяч двести частных домов стоимостью четыре миллиона фунтов, 87 приходских церквей стоимостью 250 тысяч фунтов, конторские здания стоимостью миллион фунтов. Повреждения собора святого Павла оценивали в два миллиона, а сгоревшие товары — в четыре миллиона.
Старый Лондон сгорел, и некоторым членам Королевского общества, и в частности Кристоферу Рену и Роберту Гуку, поручено было создать новый город — Лондон будущего.
…Но даже страшные вести о чуме, о пожаре, о предстоящем вскоре судном дне (год 1666-й был определён астрологами и предсказателями всех мастей как год Страшного суда) не смогли сейчас привлечь сколько-нибудь пристального внимания Ньютона. Он был не способен думать о чём-нибудь, кроме своих флюксий. Он не мог спать, ощущая умом и сердцем, всем существом своим близость крупнейшего открытия… Теперь, после освоения рядов, был расчищен широкий путь к разработке основ интегрального и дифференциального исчисления. Сам Ньютон вспоминал:
«Намёк на метод я получил из способа Ферма проведения касательных; применяя его к абстрактным уравнениям прямо и обратно, я сделал его общим. Г-н Грегори и д-р Барроу применяли и улучшили этот метод проведения касательных. Одна моя статья послужила оказией для д-ра Барроу показать мне его метод касательных до включения его в 10-ю лекцию по геометрии. Ибо я — тот друг, о котором он там упоминает».
Действительно, в ходивших по рукам спискам работ Ферма, в письмах, порхавших между учёными, содержались важные идеи, заложенные в основу исчисления бесконечно малых. Ньютон не входил ещё в число тех, кому посылают научные письма, но Барроу наверняка был одним из активных корреспондентов английских и континентальных математиков. Барроу мог сообщить и, видимо, сообщил Ньютону то, что при жизни Ферма так никогда и не было опубликовано.
Пьер Ферма, парламентский советник из Тулузы, только что умер. Он был почитателем Декарта и внёс серьёзные усовершенствования в его метод координат. Почитателем, впрочем, своеобразным, не раз вступавшим с ним в споры. Он дал уравнения прямой линии и кривых второго порядка. Проводя касательные к кривым, Ферма мог оценивать их кривизну, умел находить максимумы и минимумы кривых, их точки перегиба. Другими словами, он осуществлял уже примитивное дифференцирование и решение дифференциальных уравнений. Он мог и интегрировать, ибо умел рассчитывать площади, ограниченные кривыми линиями — любыми, в том числе дробными и отрицательными степенными функциями. Но Ферма не видел ни малейшей связи между этими процессами!
Шотландский астроном Джеймс Грегори, человек с трагической судьбой (он ослеп, проводя астрономические наблюдения, и рано умер), предтеча Ньютона и в исчислении бесконечно малых, и в гораздо большей степени — в изобретении зеркального телескопа, был тогда совсем молодым ещё человеком — всего на четыре года старше Ньютона. Но он многое успел. Он знал метод касательных, мог вычислять площади сектора круга, гиперболы и эллипса. При этом он широко пользовался не только рядами, но и логарифмами, что было по тому времени новинкой. В логарифме математика XVII века впервые встретилась с функцией непрерывно изменяющегося аргумента. Это было и возвратом к старым как мир кинетическим традициям, восходящим чуть ли не к Аристотелю, к средневековой оксфордской школе калькуляторов, к ученикам знаменитого французского математика XIV века Никола Орема. В то же время это было и громадным шагом вперёд. Некоторые современные исследователи в области истории математики считают, что «труды Непера и других математиков XVII века, связанные с открытием логарифмов, оказали гораздо более глубокое влияние на творцов дифференциального исчисления, чем исследования, относящиеся к проведению касательных и отысканию наибольших и наименьших значений, которые послужили скорее поводом к открытию этого исчисления».
Кинетическая традиция, например, чётко прослеживалась и у самого Исаака Барроу. Ньютону была близка манера Барроу рассматривать различные линии и фигуры как результат движения. Линия — след движущейся точки. Поверхность — след движущейся линии. Это давало возможность физической трактовки математических операций. Можно было, например, представлять переменные как прямолинейные участки пути, проходимые с некоторой скоростью за единицу времени.
У Барроу было и другое. Он, возможно, первым увидел связь между нахождением квадратур и построением касательных к кривым, стал догадываться о том, что это взаимообратные операции. На одном из его чертежей — две кривые. Площади криволинейных трапеций, образуемых одной из них, осью абсцисс и ординатами пропорциональны ординатами другой кривой. Тем самым он оторвал будущее понятие интеграла от площади, сделав его отрезком прямой линии. Интеграл и дифференциал становились обыкновенными функциями переменной величины.
Барроу был уже близок к пониманию производной как скорости процесса — он считал, что свойства любой кривой линии могут быть определены из геометрического сложения переменных вертикальной и горизонтальной скоростей. Но нужен был новый шаг — решительный и смелый, порывавший с традициями современной Ньютону математики. Делая этот шаг, нужно было отказаться от некоторых несомненных прежде достижений математической мысли.
Да, нужно признать сразу: многие исследователи считают — и справедливо, — что методы бесконечно малых у Ньютона не могли быть названы строгими. И тому есть причины, оправдание и даже похвала. В истории математики, как и в истории любой науки, бывали периоды, когда требование абсолютной точности доказательств тяжёлыми веригами опутывало творцов, стоящих на пороге великих достижений, сплошь да рядом связанных с необходимостью отрыва от земли, свободного полёта фантазии.