Таким строгим методом с античных времён и до времён Ньютона был «метод исчерпания» или «Архимедов метод». Этот метод, придуманный в IV веке до нашей эры Евдоксом, поддержанный Аристотелем и ставший фундаментом евклидовой геометрии, на первый взгляд, казалось бы, вовсе не исключал свободный полёт фантазии, прозрение, отгадку, интуицию. Всё это было возможно и даже приветствовалось. Но; нужно было каждый раз обязательно доказать, что полученный с их помощью результат отличается от истинного результата менее, чем на любую наперёд заданную величину. В противном случае результат не считался доказанным.
Жёсткие путы налагались этим правилом на математиков. Мало кто посмел бы рискнуть представить на суд учёных коллег новое слово своё, не подкреплённое доказательством методом исчерпания.
Попробовал Кавальери попытаться разработать алгоритм интегрирования, вывести свою «линейную сумму» — прототип интеграла, но ревнители строгости быстро отбили у него охоту вольничать.
И всё же! Именно Кавальери предложил новый, никак не доказуемый методом исчерпания метод «неделимых» математических «атомов» — бесконечно малых, но всё же не нулевых величин. Торричелли говорил о нём:
«Несомненно, геометрия Кавальери — это истинно царская дорога посреди запутанных зарослей математического терновника! Метод Кавальери следует самой природе. Жаль мне древней геометрии, которая — не зная или не желая знать учение о неделимых, оставила нашему веку в наследство лишь злополучное убожество!»
— Долой Евклида и Архимеда, да здравствует Кавальери! — повторяли с Торричелли молодые математики. А ревнители травили Кавальери, который, устав от борьбы, жаловался друзьям:
— Все эти придирки и споры, скорее философские, чем геометрические, для меня крайне мучительны… Считаю неправильным тратить время, которое ещё осталось мне для работы, на эти пустяки.
И не отвечал на критические нападки. Многие не поняли идей Кавальери или поняли их не так. Торричелли, например, счёл, что навсегда избавлен от обязанности представлять доказательства. Плотина была прорвана — и математики, впав в иную крайность, свободно жонглировали теперь нулями и бесконечностями, сходящимися и несходящимися рядами.
Неделимые были подозрительны. Их третировали ревнители строгости, их не признавали христианские богословы:
— Всякие науки истинны, кроме тех, что основаны на предположении, что непрерывное состоит из неделимых!
Богословы предупреждали:
— Если допустить, что мир состоит из материальных неделимых и пустоты, то получится, что духовный мир — это продукт чистой материи, что ересь.
Монах Кавальери, естественно, страшился таких обвинений. Он разъяснял:
— Я никогда не решался утверждать, что непрерывное составлено из неделимых, лишённых, конечно, какой бы то ни было толщины. Нельзя составить, как делает Кеплер, большие тела из мельчайших тел. Неделимые — это следы «текущей», «флюентной», движущейся плоскости, пересекающей данную линию, фигуру или тело и оставляющей на ней во все моменты времени след. Ведь время, как говорили пифагорейцы, состоит из отдельных моментов!
Возврат к кинетическим традициям древних философов-пифагорейцев вызывался расцветом механики и астрономии. Статическое интегрирование точек заменялось кинематическим интегрированием траекторий. Другими словами: линия перестала интересовать исследователей как таковая — линия стала следом движущегося реального тела, описанием реального процесса. И вот, изучая метод Валлиса, Ньютон понял, что он представляет собой гораздо более удобный и универсальный инструмент, чем считал сам Валлис. Ньютон понял, что валлисовские квадратуры есть частные случаи единого процесса, который мы по сегодняшней классификации назвали бы интегрированием — операцией, обратной дифференцированию. И более того. Если Валлис считал, что площади под кривыми есть статистические суммы бесконечно малых площадей, то Ньютон, следуя Барроу, воспринимал эти площади кинетически. Его площади описываются движущейся точкой. Он достиг непрерывности движения там, где Валлис видел ступеньки. Решающий шаг — описание кривых точкой, движущейся при определённых условиях. Возможно, этот шаг связан с лекциями Барроу. Именно идея движения принесла от Кавальери термин «флюксии» — «текущие», термин, которым Ньютон характеризовал свой метод. Движение предполагало введение новой переменной — времени и нового понятия — скорости, эквивалентного современной производной.
Ньютон считал, что любая кривая линия — это след движущейся точки. Элементы этого движения всё время меняются, причём в разной степени, находясь в то же время в некоторой связи между собой, определяемой уравнением. Если знать уравнение кривой, то можно в любой заданный момент времени при любом значении «x» узнать изменения или «флюксии» этих элементов.
В более позднем «Трактате о квадратуре кривых» Ньютон пишет:
«…Я рассматриваю математические величины не как состоящие из очень маленьких частей, но как описываемые с помощью непрерывного движения. Линии описываются и, следовательно, порождаются непрерывным движением точек, поверхности — движением линий, пространственные фигуры — вращением сторон, интервалы времени — непрерывным течением и т. д. Это порождение имеет место в природе вещей и может каждодневно наблюдаться по движению тел… Следовательно, рассматривая эти величины, которые равномерно увеличиваются и порождаются этим увеличением, становясь больше или меньше в соответствии с большей или меньшей скоростью, с которой они увеличиваются и порождаются, я искал метод определения величин из скоростей движения или приращений, при которых они порождаются; и, назвав эти скорости движением или приращения флюксиями, а порождённые величины флюентами, я постепенно пришёл к методу флюксий, который я и использовал в 1665 или 1666 году при решении задачи о квадратуре кривой».
Найти концепции движения достойное место в исчислении бесконечно малых помогало богатое физическое и геометрическое воображение Ньютона. Он легко представлял себе различные положения фигур, их возможные трансформации при перемещении, смещении тел, движений осей. Своим умственным взором он ясно видел, например, как круг превращается в эллипс, и видел при этом, какие изменения происходят в процессе подобного превращения в формулах. Он не смог пока найти алгоритма дифференцирования и каждый раз показывал красочную процедуру с конкретными кривыми. И чувствовал необходимость прийти к более общим выводам.
Великая заслуга Ньютона — кинетическое обоснование процесса исчисления бесконечно малых. Но и здесь у него был фундамент. Один из исследователей его творчества пишет, «что по принятой им теории плоскости получается в результате движения линий и т. п. Об этом твердили и писали и пифагорейцы, и христианские богословы, и Кавальери. Равным образом и в изучении кривых, как неких траекторий, возникших в результате сложения двух скоростей, направленных по ординатам, Ньютон тоже не был пионером; здесь Ньютон имел предшественников в лице дю-Вердю и Торричелли. Основная и величайшая заслуга Ньютона в том, что он противопоставил друг другу флюксию как скорость процесса и флюенту как, так сказать, общий результат процесса в каждый отдельный момент». Он увидел в дифференцировании и интегрировании то единство, которого никто до него не понимал.
Следует подчеркнуть, что, хотя Ньютон всё время рассматривает как бы механическое движение в пространстве и во времени, он специально оговаривает, что слово «время» носит у него чисто условное значение. Это могла бы быть любая другая величина, возрастающая равномерно и к которой могли бы быть отнесены другие изменяющиеся величины. Производная у Ньютона — это относительная скорость любого процесса.
В октябре 1666 года работа окончена. Ньютон пишет мемуар, начинающийся словами: «Следующие предложения достаточны для решения задач посредством движения». Это — систематическое изложение метода флюксий. Здесь мы находим намётки будущих дифференциалов — столь важного в последующем развитии математики понятия. В мемуаре Ньютон представляет собственный метод квадратур, даёт предложения для упрощения уравнений до форм, пригодных для интегрирования. Есть здесь и таблицы интегралов, и разложение в ряды некоторых функций. Однако сколько-нибудь постоянного обозначения для интеграла у Ньютона ещё нет. Возможно, что он не хотел снабжать специальным названием и обозначением сущность, не имеющую однозначного и единственного определения: ведь неопределённые интегралы находят с точностью до постоянной.