Структурные формулы пуриновых оснований:
Аденин (6-аминопурин) – бесцветное кристаллическое вещество с Тпл 360–365 °C, мало растворяется в воде. Входит в состав нуклеотидов, нуклеозидов и нуклеиновых кислот. Его используют в качестве исходного соединения для органического и микробиологического синтеза и в медицине, например в качестве консерванта донорской крови. Гуанин (2-амино-6-гидроксипурин) – бесцветное кристаллическое вещество с Тпл 365 °C, мало растворяется в воде, входит в состав нуклеотидов, нуклеозидов и нуклеиновых кислот.
82. Нуклеиновые кислоты
Характерные особенности нуклеиновых кислот и теории их происхождения:
1) нуклеиновые кислоты – природные полимеры, они были обнаружены в ядрах клеток (лат. nucleus – ядро) еще в прошлом столетии, но долгое время их роль в жизни организмов была неизвестна ученым;
2) несколько десятилетий назад было расшифровано строение нуклеиновых кислот и установлено, что они играют главную роль в хранении и передаче наследственной информации и обеспечивают синтез белков в клетке.
Состав нуклеиновых кислот.
Нуклеиновые кислоты подвергаются гидролизу, при этом получается не один продукт (как у крахмала или целлюлозы), а несколько (как у белков): а) углевод (пентоза); б) азотсодержащие гетероциклические соединения (пиримидиновые и пуриновые основания); в) ортофосфорная кислота.
В организмах существуют два вида нуклеиновых кислот:
1) рибонуклеиновые (РНК);
2) дезоксирибонуклеиновые (ДНК).
Основные отличия этих нуклеиновых кислот.
1. Они различаются характером углеводного компонента – пентозы.
2. При гидролизе одних кислот образуется рибоза, в таком случае это рибонуклеиновые кислоты (РНК).
3. При гидролизе других – дезоксирибоза, это дезоксирибонуклеиновые кислоты (ДНК).
4. Различаются нуклеиновые кислоты и входящими в них азотистыми основаниями.
5. В РНК и ДНК входят по четыре основания из пяти, в их числе обязательно оба пуриновых основания – аденин и гуанин – и одно из пиримидиновых оснований – цитозин. Четвертое же основание (второе пиримидиновое) в нуклеиновых кислотах разное: в РНК это урацил, а в ДНК – тимин.
6. Неодинакова у нуклеиновых кислот и молекулярная масса: у РНК – от нескольких десятков тысяч до нескольких миллионов, ДНК – достигает даже нескольких десятков миллионов.
7. Структурными звеньями нуклеиновых кислот являются так называемые нуклеотиды.
Они выделены как промежуточные продукты гидролиза, когда процесс разложения не дошел до образования конечных продуктов.
Структурные формулы нуклеотидов.
Мононуклеотиды представляют собой фосфаты нуклеозидов, в которых фосфорная кислота связана сложноэфирной связью с одной из свободных гидроксильных групп пентозы.
Нуклеозиды – это N-гликозиды пиримидиновых или пуриновых оснований, в которых первый углеродный атом пентозы (атом углерода, обозначаемый 1) связан гликозидной связью с N-1-пиримидина или N-9-пурина.
83. Строение полинуклеотидов. Двойная спираль ДНК
Особенности строения полинуклеотидов:
1) основную структурную линию макромолекулы ДНК образуют последовательно соединенные друг с другом только звенья пентозы и ортофосфорной кислоты;
2) азотистые основания присоединены сбоку к углеводным звеньям;
3) они образуют «бахрому» макромолекулы нуклеиновой кислоты;
4) остатки ортофосфорной кислоты соединяют между собой углеводные звенья, образуя химические связи (за счет выделения молекул воды) с гидроксилом третьего атома углерода одной молекулы пентозы и гидроксилом пятого углеродного атома другой молекулы пентозы.
При этом у остатков фосфорной кислоты сохраняется еще по одной гидроксильной группе, способной диссоциировать, что и обусловливает кислотные свойства макромолекул;
5) самое существенное в строении нуклеиновых кислот – последовательность азотистых (пиримидиновых и пуриновых) оснований, «прицепленных» к основной цепи, которая состоит из остатков пентозы и фосфорной кислоты, т. е. последовательность нуклеотидов в макромолекуле.
С определенной последовательностью нуклеотидов, т. е. первичной структурой нуклеиновых кислот, связаны их биологические функции в клетке.
Двойная спираль ДНК, ее особенности.
Дезоксирибонуклеиновые кислоты, в молекулах которых зашифрована в виде различной последовательности нуклеотидов вся наследственная информация биологического строения.
1. Макромолекулы ДНК представляют собой спираль, которая состоит из двух цепей, закрученных вокруг общей оси.
2. Это их вторичная структура.
3. В поддержании вторичной структуры, как и в белках, важная роль принадлежит водородным связям.
4. Образуются они здесь между пиримидиновыми и пуриновыми основаниями разных цепей макромолекулы, располагающимися, в отличие от радикалов белковых молекул, не снаружи, а внутри спирали.
5. Водородные связи образуются между атомами водорода, имеющими значительный (хотя и частичный) положительный заряд, и отрицательно заряженными атомами кислорода.
Происхождение положительных и отрицательных зарядов на атомах, между которыми образуются водородные связи:
1) азотистые основания соединяются по определенному принципу, дополняя друг друга, – пиримидиновое обязательно с пуриновым и наоборот, при этом между цепями молекулы всегда находятся одинаковые ступеньки из трех гетероциклов (а не из двух и не из четырех);
2) это обеспечивает равномерность в построении всей молекулы ДНК.
Химия и биохимия белков и нуклеиновых кислот в своем развитии привели к созданию новых наук: а) биоорганической химии; б) молекулярной биологии.
84. Строение полимеров, свойства и синтез полимеров
Низкомолекулярное вещество, из которого синтезируют полимер, называется мономером. Многократно повторяющиеся в макромолекуле группы атомов называются структурными звеньями. Молекула мономера и структурное звено макромолекулы одинаковы по составу, но различны по строению:
1) в данном случае в молекуле пропилена имеется двойная связь между атомами;
2) в структурном звене полипропилена она отсутствует;
3) число n в формуле полимера показывает, сколько молекул мономера соединяется в макромолекулу. Она называется степенью полимеризации.
Макромолекулы полимеров могут иметь различную геометрическую форму:
а) линейную (зигзагообразную), когда структурные звенья соединены в длинные цепи последовательно одно за другим;
б) разветвленную (с ними мы встречались на примере крахмала);
в) пространственную, когда линейные молекулы соединены между собой химическими связями (например, в вулканизированном каучуке – резине).
Геометрическая форма полимеров существенно сказывается на их свойствах.
Свойства полимеров:
1) полимеры могут иметь кристаллическое и аморфное строение;
2) молекулярная масса для полимеров имеет некоторые особенности.
Характерные особенности молекулярной массы.
1. В процессе полимеризации в макромолекулы соединяется различное число молекул мономера в зависимости от того, когда произойдет обрыв растущей полимерной цепи.
2. При этом образуются макромолекулы разной длины и разной массы.
3. Указываемая для такого вещества молекулярная масса – это лишь ее среднее значение, от которого масса отдельных молекул существенно отклоняется в ту или иную сторону.
Например, если молекулярная масса полимера 28 000, то в нем могут быть молекулы с относительной массой 26 000, 28 000, 30 000 и т. д.
Свойства, которые вытекают из особенностей строения полимеров:
1) низкомолекулярные вещества характеризуются определенными температурами плавления, кипения и другими константами;