Через четверть века, в 1800 году, в Англии уже работала 321 паровая машина Уатта, собранная на заводах Болтона. И это было только начало новой технической революции. Со времен Прометея огонь вторично поставили на службу человеку. Паровая машина Уатта превращала тепло в работу и открывала безграничный (как тогда казалось) ресурс повышения производительности труда. Началась эра машинного производства.
В 1770 году Уатт ввел в повсеместное использование единицу мощности, которую назвал horse power, то есть лошадиной силой (л. с.). Здесь тоже сказалась деловая смекалка великого изобретателя. Как объяснить покупателю, насколько мощное изделие он приобретает за свои кровные денежки? Достаточно сказать, работу скольких лошадей выполнит эта машина, и сразу покупатель понимает: сделка выгодна (сколько стоила на рынке лошадь, тогда знали все). Хитрый Уатт установил эту единицу таким образом, чтобы она была на 50 процентов выше, чем средняя тягловая мощность, развиваемая обычной тогдашней английской лошадью в течение 8-часового рабочего дня. Мощность паровой машины, измеряемая такими лошадиными силами, была гарантированно выше мощности соответствующего количества лошадей.
Эта единица измерения жива и поныне, хотя уже в 1889 году английские ученые предложили другую единицу измерения мощности, которую назвали в честь своего знаменитого земляка – ватт (была утверждена в качестве международной единицы только в 1893 году на Международном конгрессе электриков в Чикаго). Однако мощность автомобилей мы все равно по привычке определяем в «лошадках».
Несколько реже применяется в обычной жизни единица измерения работы, джоуль, названная по имени другого англичанина, физика Джеймса Прескотта Джоуля (James Prescott Joule; 1818–1889). Джоуль был выдающимся экспериментатором и прославился исследованиями в самых различных областях физики – механике, термодинамике, теории газов, электромагнетизме, молекулярной физике, акустике. Наиболее известна открытая им (совместно с Э. Х. Ленцем) зависимость между силой тока, проходящего по проводнику, и выделяемым при этом теплом (закон Джоуля – Ленца), а также коэффициент, связывающий количество затраченной работы с количеством произведенного этой работой тепла; этот коэффициент называется механическим эквивалентом тепла.
Иной раз кажется: ну что еще можно придумать, усовершенствовать для автомобиля? Однако изобретатели придумывают, совершенствуют. А производители тут же воплощают в жизнь все новшества. Хотя наряду с ними в автомобиле «живут» и изобретения очень старые. Чемпионом является, конечно, колесо. А вот на второе место совершенно спокойно выходит карданный вал, передающий крутящий момент от коробки передач к колесам. Это изобретение было сделано в XVI веке.
Когда в 1541 году испанский король Карл V завоевал Милан, его приветствовала вся городская аристократия. Среди них был и почтенный председатель городской коллегии врачей Джероламо Кардано (Gerolamo Cardano; 1501–1576). Кардано считал себя искусным лекарем, не менее искусным, чем древние врачеватели Гиппократ и Авиценна. По его словам, он описал приемы излечения 5 тысяч болезней. Другой своей специальностью он называл астрологию и с гордостью упоминал имена знаменитых людей, которые воспользовались его услугами (среди них был сам римский папа).
Таких, как Кардано, принято называть энциклопедистами. Его автобиографическая книга «De vita propria» («О моей жизни») была переведена на русский язык в 1938 году. Кардано закончил ее за четыре месяца до смерти. Читая эту автобиографию, иной раз удивляешься, с каким простодушием автор рассказывает о себе: «Цель, к которой я стремился, заключалась в увековечивании моего имени, поскольку я мог этого достигнуть, а вовсе не в богатстве или праздности, не в почестях, не в высоких должностях, не во власти». Да, широкая известность могла прокормить и в XVI веке, особенно человека ученого, закончившего курс наук в Падуанском университете.
Кардано занимался медициной и астрологией, которые числились науками высокими, но также и низкой наукой, механикой. Новому владыке Милана, Карлу V, он предложил: не сделать ли экипаж с осями специальной конструкции, которые могли бы вращать колеса, даже находясь под некоторым углом к ним. Такая шарнирная подвеска, по словам ученого, обеспечила бы движение без тряски даже на неровных и плохих дорогах.
Надо сказать, что это придумал не Кардано. Подобное соединение знали с античных еще времен, а старший современник Дж. Кардано, Леонардо да Винчи (1452–1519), тоже энциклопедист, предложил применять на судах шарнирную подвеску компаса, чтобы тот показывал правильный курс даже при значительной качке. В первой половине XVI века такие компасы появились на европейских кораблях – правда, ни Леонардо, ни Кардано к этому отношения не имели. Похоже, что и королевский экипаж на шарнирной подвеске в реальность не воплотился.
Занимался Кардано и математикой. Тем, кто учил алгебру, известна формула решения кубического уравнения, которая называется «формулой Кардано», хотя Кардано о формульной записи понятия еще не имел и способ решения (или, как мы сейчас сказали бы, алгоритм) изложил словами в своем трактате «Ars magna» («Великое искусство»). Да и здесь первенство Кардано под вопросом. Изобретателем «формулы Кардано» считается Никколо Тарталья (около 1499–1557).
Но если с формулой Кардано встречаться довелось не каждому, то уж то, что в автомобиле есть кардан (карданный вал), известно всякому. Так что Кардано поминают и 400 лет спустя после его смерти. Заявленная цель достигнута, пусть и несколько извилистым путем.
Еще одну фамилию нельзя не упомянуть, когда говоришь об автомобилях. Да и не только об автомобилях – о тепловозах, теплоходах, тракторах и танках тоже. Везде, где от двигателя требуется большая мощность и непривередливость к горючему, используют дизель. Этот двигатель внутреннего сгорания, работающий на жидком топливе, которое воспламеняется от сжатия, называется так потому, что его придумал в конце XIX века немецкий инженер Рудольф Дизель (Rudolf Diesel; 1858–1913).
Дизель родился в немецкой семье, проживавшей в Париже. Его отец по немецкой традиции занимался делом, которое кормило поколения предков, – был переплетчиком и книготорговцем. В 1870 году началась Франко-прусская война. Принадлежать к немецкому меньшинству во Франции стало довольно опасно, и семья переехала в Англию. А получать образование сына отправили в Германию.
Рудольф, живя у родственников в Аугсбурге, закончил с отличием реальное училище и поступил в одно из лучших высших учебных заведений Германии – Высшую политехническую школу в Мюнхене. Ее он тоже закончил блестяще в 1878 году. Способности юноши были просто удивительны, а упорство в достижении цели – абсолютно немецким.
Дизель проработал два года в Швейцарии, на заводе братьев Зульцер, потом стал директором парижского отделения холодильной фирмы профессора Карла фон Линде. Он стремился осуществить давнюю мечту – построить двигатель внутреннего сгорания, более производительный, чем паровые машины, которые в те годы приводили в движение всю европейскую и американскую индустрию.
В 1890 году Дизель переехал в Берлин. В том же году он придумал новую схему двигателя, в котором воздух сжимался в камере сгорания до высокой температуры, после чего в него впрыскивалось горючее, которое тут же воспламенялось, дополнительно нагревало воздух, а горячий воздух, расширяясь, совершал работу. Двигатель Дизеля был запатентован в 1892 году. И сразу же на заводе в Аугсбурге началось опытное производство. Работы частично финансировались Фридрихом Круппом, а частично – братьями Зульцер, поверившими в идею Дизеля, начинавшего свою инженерную деятельность на их предприятии. Двигатель действительно оказался «всеядным». Первый дизельный двигатель работал на буроугольной пыли, горючем очень низкокалорийном, но показал хорошие результаты. Однако впрыскивать в цилиндр пыль оказалось технически сложнее, чем жидкое топливо. В конце 1896 года был построен окончательный, третий по счету, вариант опытного двигателя мощностью 20 л. с. Этот двигатель работал на керосине и был экономичнее всех существовавших тогда тепловых двигателей.