Реакцию между H2 и Cl2 , вызванную действием кванта света h n, можно представить схемой:
— зарождение цепи
— продолжение цепи
— обрыв цепи
В последних двух стадиях М — любая третья частица (атом или молекула), которая нужна для того, чтобы отнять часть энергии у образующихся частиц Cl2 и HO2 и тем самым сделать невозможным их обратный распад.
Скорость Ц. р. чрезвычайно чувствительна к скоростям зарождения и обрыва и поэтому зависит от наличия химических примесей, от материала и состояния стенок реакционного сосуда, а также от его размера и формы.
Скорость реакций с неразветвлёнными цепями (W) равна
W = w n = w0 Wп /Woбр
где w — скорость зарождения цепей, n — длина цепей, Wп и Woбр — соответственно скорости продолжения и обрыва цепей (Woбр может быть составной величиной, отражающей различные пути обрыва цепи).
По неразветвлённо-цепному механизму протекает большое число практически важных реакций, в частности хлорирование , ряд реакций жидкофазного окисления органических соединений, термический крекинг . Своеобразным процессом с неразветвлёнными цепями является также полимеризация , при которой цепь реакций одновременно определяет и длину полимерной молекулы.
Образование активных частиц, необходимых для зарождения цепей, происходит при разрыве одной из связей в молекуле и всегда сопряжено с затратой энергии. Свободные радикалы можно получать за счёт внешних источников энергии, например кванта света, поглощаемого молекулой при фотохимической реакции, а также энергии электронов, образующихся в электрическом разряде или воздействии a-, b- и g-излучения. Наиболее важно в практическом отношении образование свободных радикалов за счёт внутренней тепловой энергии системы. Но энергия связи в большинстве молекул велика и, значительно велика энергия их прямой диссоциации на радикалы, поэтому путём непосредственного распада исходных молекул Ц. р. инициируются лишь при более или менее высоких температурах. Часто, однако, зарождение цепей происходит при участии различных примесей-инициаторов. Такими примесями могут быть молекулы со слабой связью, при распаде которых легко образуются радикалы, начинающие цепи, или молекулы, легко вступающие в окислительно-восстановительные реакции, например Fe2+ + H2 O2 ® Fe3+ + OH- + OH. Инициирование может происходить также на стенке реакционного сосуда. Энергия активации при этом понижается благодаря тому, что в системе используется энергия адсорбции одного из радикалов. Цепи могут зарождаться и в результате реакций между молекулами. Некоторые из таких реакций протекают достаточно быстро даже при невысоких температурах, например F2 + C2 H4 ® F + C2 H4 F.
Концепция неразветвлённых Ц. р. возникла в результате работ немецкого учёного М. Боденштейна, обнаружившего (1913), что в ряде фотохимических реакций один поглощённый квант света вызывает превращение многих молекул. В частности, при образовании HCl из H2 и Cl2 в среднем на каждый поглощённый квант образуется до 1 000 000 молекул HCl. Поскольку один квант может активировать только одну молекулу, остальные вступают в реакцию без непосредственного воздействия света. Механизм этой реакции предложил В. Нернст (1916).
Современная теория реакций с неразветвлёнными цепями была создана и развита школой Боденштейна, а также трудами советских учёных.
Реакции с разветвленными цепями. Совершенно особыми свойствами обладают реакции, в которых цепи разветвляются. Эти реакции были обнаружены в 1926—28 группой ленинградских физиков на примере окисления паров фосфора. Было установлено, что при малом изменении какого-либо параметра реакционной системы (концентрации реагентов, температуры, размера сосуда, примесей специфических веществ) и даже при разбавлении инертным газом практически незаметная реакция скачкообразно переходит в быстрый, самоускоряющийся процесс типа самовоспламенения . Это явление имеет место даже при низких температурах, когда скорость зарождения подобных процессов чрезвычайно мала, а также в условиях, когда тепловой взрыв невозможен. Поэтому вне области воспламенения (см. рис. ) реакция практически не идёт. Н. Н. Семёновым с сотрудниками впервые было дано объяснение этого парадоксального факта и создана количественная теория разветвленных Ц. р. Значительный вклад в развитие представлений о разветвленных Ц. р. внесли также пионерские работы С. Н. Хиншелвуда с сотрудниками по изучению верхнего предела воспламенения. За исследования механизма химических реакций Семёнову и Хиншелвуду была присуждена в 1956 Нобелевская премия.
В ходе разветвленных Ц. р. при взаимодействии одного из активных центров возникает более чем один (часто — три) новый активный центр, т. е. происходит размножение цепей.
Примером разветвленной Ц. р. может служить окисление водорода, где разветвление и продолжение цепей происходит по схеме:
(1) Н + O2 ® OH + О — разветвление
— продолжение
или в сумме Н + 3H2 + O2 = 2H2 O + 3H.
Наряду с образующимися в реакциях 1—3 активными центрами Н и OH, обеспечивающими развитие неразветвлённой цепи, в реакции (1) образуется атом кислорода, формально обладающий двумя свободными валентностями и способный легко входить в реакцию (3) с образованием Н и OH — ещё двух носителей цепей. Такой тип разветвления был назван материальным.
В реакциях с т. н. энергетическим разветвлением размножение цепей осуществляется за счёт возбуждённых частиц — продуктов экзотермических реакций развития цепи. Например, при взаимодействии фтора с водородом развитие цепей происходит по схеме:
(1) F2 ® 2F
(2) F + H2 ® HF* + Н
(3) Н + F2 ® HF* +F
(4) HF* + H2 ® HF + H2 *
(5) H2 * + F2 ® HF + H + F
В реакциях (2) и (3) наряду с атомами Н и F образуются колебательно-возбуждённые молекулы HF*, которые передают избыток энергии молекуле H2 [реакция (4)]. В результате столкновения обогащенной энергией молекулы H2 * с молекулой F2 образуется молекула HF и атомы Н и F [реакция (5)], начинающие новые цепи (энергетическое разветвление). В СССР получены экспериментальные данные (1970-е гг.), которые, по-видимому, можно рассматривать как подтверждение высказанной Семеновым идеи (1934) о возможности энергетического разветвления с участием электронно-возбуждённых частиц.
Скорость разветвлённо-цепного процесса в газовой фазе в начальных стадиях (вплоть до выгорания 30—40% газа) выражается формулой
где k — константа скорости реакции активного центра с исходным веществом, [А] — концентрация исходного вещества, w — скорость зарождения цепей, f и g — соответственно эффективные константы скорости разветвления и обрыва, e — основание натурального логарифма, t — время.
В условиях, когда (f — g ) > 0, концентрация активных центров и скорость W растут лавинообразно во времени. Если же (f — g ) < 0, то концентрации активных центров и соответственно скорость реакции очень малы, т.к. мала скорость зарождения цепей wo . Переход от одного режима реакции к другому осуществляется практически скачком при критическом условии (f — g ) = 0.