Литмир - Электронная Библиотека
Содержание  
A
A

Солнечный телескоп

Со'лнечный телеско'п,телескопдля наблюдений Солнца. С. т. с объективами небольших диаметров и небольших фокусных расстояний обычно имеют параллактическую монтировку. К таким С. т. относятся коронографы, предназначенные для наблюдения солнечной короны вне затмений, фотосферные телескопы и хромосферные телескопы, снабженные обычно интерференционно-поляризационными фильтрами, позволяющими наблюдать Солнце в свете водородной линии Нa. Крупные С. т. снабжаются системой движущихся плоских зеркал (целостатом) для направления солнечного света в неподвижный телескоп, а также различными приборами для исследования Солнца — фотографическими камерами, фотоэлектрическими приёмниками света, спектрографами,магнитографами солнечными и др. В зависимости от направления оптической оси различают горизонтальные и башенные С. т. (см. рис.). Строятся С. т. также и с наклонной осью.

  Лит.: Солнечная система, под ред. Дж. Койпера, пер. с англ., т. 1, М., 1957.

Большая Советская Энциклопедия (СО) - i010-001-271251833.jpg

Башенный солнечный телескоп Крымской астрофизической обсерватории АН СССР.

Солнечный термоэлектрогенератор

Со'лнечный термоэлектрогенера'тор,солнечная энергетическая установка для прямого преобразования солнечной энергии в электрическую, включающая систему концентрации энергии солнечной радиации, термоэлектрический генератор, систему слежения за видимым движением Солнца и опорную механическую часть. Кпд С. т. зависит главным образом от уровня рабочих температур горячих и холодных спаев и свойств полупроводниковых материалов термоэлементов. Увеличение плотности теплового потока, проходящего через каждый термоэлемент, осуществляют гелиоконцентраторами либо посредством лучевоспринимающих теплопроводных пластин, имеющих площадь, большую, чем поперечное сечение термоэлемента в направлении излучения. Соответственно различают С. т. с оптической концентрацией и панельные, с применением селективных покрытий. С. т. перспективны для применения в качестве источников энергопитания автономных потребителей малой мощности (до нескольких сотен вт), например установок для подъёма грунтовых вод в сельском хозяйстве, устройств навигации и связи, космических аппаратов, работающих в полях интенсивной космической радиации, и т.д.

  Лит.: Поздняков Б. С., Коптелов Е. А., Термоэлектрическая энергетика, М., 1974.

  Ю. Н. Малевский.

Солнечный удар

Со'лнечный уда'р, остро развивающееся болезненное состояние человека и животных; обусловлено нарушением мозговых функций в результате непосредственного действия солнечных лучей на голову. У человека возникающие при С. у. функциональные и структурные изменения в подкорково-стволовых отделах мозга (регулирующих дыхание, кровообращение, температурный баланс, уровень бодрствования — сна и т.д.) проявляются головной болью, рвотой, вялостью, повышением температуры тела (иногда выше 40 °С), нарушениями пульса, дыхания, судорогами, возбуждением и др. симптомами; в тяжёлых случаях развивается кома. Первая помощь: перенести больного в тень; охлаждение холодными компрессами, влажными обёртываниями и т.п.; в тяжёлых случаях — искусственное дыхание. См. также Тепловой удар.

Солнце

Со'лнце, центральное тело Солнечной системы, представляет собой раскалённый плазменный шар; С. — ближайшая к Земле звезда. Масса С. 1,990 1030кг (в 332 958 раз больше массы Земли). В С. сосредоточено 99,866% массы Солнечной системы. Солнечный параллакс (угол, под которым из центра С. виден экваториальный радиус Земли, находящейся на среднем расстоянии от С., равен 8",794 (4,263•10–5рад). Расстояние от Земли до С. меняется от 1,4710•1011м (январь) до 1,5210•1011 м (июль), составляя в среднем 1,4960•1011м (астрономическая единица). Средний угловой диаметр С. составляет 1919",26 (9,305•10–3 рад), чему соответствует линейный диаметр С. 1,392•109 м (в 109 раз больше диаметра экватора Земли). Средняя плотность С. 1,41•103кг/м3. Ускорение силы тяжести на поверхности С. составляет 273,98 м/сек2. Параболическая скорость на поверхности С. (вторая космическая скорость) 6,18•105м/сек. Эффективная температура поверхности С., определяемая, согласно Стефана — Больцмана закону излучения, по полному излучению С. (см. Солнечная радиация), равна 5770 К.

  История телескопических наблюдений С. начинается с наблюдений, выполненных Г. Галилеем в 1611; были открыты солнечные пятна, определён период обращения С. вокруг своей оси. В 1843 немецкий астроном Г. Швабе обнаружил цикличность солнечной активности. Развитие методов спектрального анализа позволило изучить физические условия на С. В 1814 Й. Фраунгоферобнаружил тёмные линии поглощения в спектре С. — это положило начало изучению химического состава С. С 1836 регулярно ведутся наблюдения затмений С., что привело к обнаружению короны и хромосферы С., а также солнечных протуберанцев. В 1913 американский астроном Дж. Хейл наблюдал зеемановское расщепление фраунгоферовых линий спектра солнечных пятен и этим доказал существование на С. магнитных полей. К 1942 шведский астроном Б. Эдлен и др. отождествили несколько линий спектра солнечной короны с линиями высокоионизованных элементов, доказав этим высокую температуру в солнечной короне. В 1931 Б. Лиоизобрёл солнечный коронограф, позволивший наблюдать корону и хромосферу вне затмений. В начале 40-х гг. 20 в. было открыто радиоизлучение Солнца. Существенным толчком для развития физики С. во 2-й половины 20 в. послужило развитие магнитной гидродинамики и физики плазмы. После начала космической эры изучение ультрафиолетового и рентгеновского излучения С. ведётся методами внеатмосферной астрономии с помощью ракет, автоматических орбитальных обсерваторий на спутниках Земли, космических лабораторий с людьми на борту. В СССР исследования С. ведутся на Крымской и Пулковской обсерваториях, в астрономических учреждениях Москвы, Киева, Ташкента, Алма-Аты. Абастумани, Иркутска и др. Исследованиями С. занимается большинство зарубежных астрофизических обсерваторий (см. Астрономические обсерватории и институты).

  Вращение С. вокруг оси происходит в том же направлении, что и вращение Земли, в плоскости, наклоненной на 7°15' к плоскости орбиты Земли (эклиптике). Скорость вращения определяется по видимому движению различных деталей в атмосфере С. и по сдвигу спектральных линий в спектре края диска С. вследствие эффекта Доплера. Таким образом было обнаружено, что период вращения С. неодинаков на разных широтах. Положение различных деталей на поверхности С. определяется с помощью гелиографических координат, отсчитываемых от солнечного экватора (гелиографическая широта) и от центрального меридиана видимого диска С. или от некоторого меридиана, выбранного в качестве начального (т. н. меридиана Каррингтона). При этом считают, что С. вращается как твёрдое тело. Положение начального меридиана приводится в Астрономических ежегодниках на каждый день. Там же приводятся сведения о положении оси С. на небесной сфере. Один оборот относительно Земли точки с гелиографической широтой 17° совершают за 27,275 сут (синодический период). Время оборота на той же широте С. относительно звёзд (сидерический период) — 25,38 сут. Угловая скорость вращения w для сидерического вращения изменяется с гелиографической широтой j по закону: w = 14°, 44—3° sin2j в сутки. Линейная скорость вращения на экваторе С. — около 2000 м/сек.

161
{"b":"106261","o":1}