По такому же типу осуществляется сопряжение реакций и при синтезе других сложных соединений (липидов, полисахаридов, белков и нуклеиновых кислот). В этих процессах, кроме АТФ, принимают участие и некоторые аналогичные соединения, в которые, вместо аденина, входят другие азотистые основания (гуанин-, цитозин-, уридин-, тимидинтрифосфаты или креатинфосфаты). При синтезе белков и нуклеиновых кислот от АТФ отщепляется не одна концевая фосфатная группа, а две последние (пирофосфат). Т. о., все процессы накопления (аккумулирования) энергии в организмах должны сводиться к процессам образования АТФ, т. е. фосфорилирования (включения фосфатных групп в АДФ или АМФ).
Энергетика процессов метаболизма, в которых энергия сохраняет форму химической, в основных чертах ясна, но этого нельзя сказать о процессах, в которых энергия переходит из химической формы в механическую работу или какой-нибудь иной вид энергии (например, электрический). Так, известно, например, что работа, совершаемая сокращающейся мышцей, производится за счёт энергии, освобождающейся при гидролизе АТФ, но механизм этого преобразования энергии ещё не ясен. Выяснение интимных механизмов механо-химического эффекта и других превращений химической энергии — важная и актуальная задача Б., успешное решение которой может открыть путь к прямому преобразованию химической энергии в механическую и электрическую без промежуточного «разорительного» превращения её в тепло.
Основным и практически единственным источником энергии для жизни на Земле является энергия излучения Солнца, часть которой поглощается пигментами растений и некоторых бактерий и в процессе фотосинтеза аккумулируется автотрофными организмами в форме химической энергии: частью в виде АТФ (процессы фотосинтетического фосфорилирования), частью в виде энергии некоторых специфических соединений (восстановленных никотинамид-адениндинуклеотидов), являющихся важнейшими промежуточными аккумуляторами энергии. Весь дальнейший процесс синтеза углеводов, а затем и липидов,белков и других компонентов клетки осуществляется в цикле темновых ферментативных реакций за счёт энергии указанных выше соединений.
При реакции синтеза углеводов [суммарно: 6CO2+6H2O®C6H12O6+6O2] увеличение свободной энергии DF=2,87 Мдж/моль (686 000 кал/моль), а теплосодержание продуктов (молярная энтальпия) изменяется на величину DН=2,82 Мдж/моль (673 000 кал/моль). Т. о., углеводы, липиды, белки и другие пищевые продукты представляют собой форму долговременного хранения поглощённой растением энергии излучения.
В гетеротрофных организмах АТФ образуется в процессе дыхания на промежуточных стадиях окисления пищевых веществ до CO2 и воды. В этом процессе около 40—50% свободной энергии переходит в энергию макроэргических связей АТФ, а остальная теряется в виде тепла. Общее количество энергии, запасаемой растениями в год (при упрощённом предположении, что весь углерод фиксируется в виде глюкозы), равно примерно 1018—1021дж, что составляет лишь 0,001 от общего потока падающей на Землю солнечной энергии (1024дж/год.).
Некоторое количество энергии накапливается и в процессах хемосинтеза за счёт окисления восстановленных неорганических соединений, но вклад этих процессов в энергетику биосферы невелик.
Сказанное выше характеризует только суммарный баланс энергии в процессах её аккумуляции и использования. Изучение первичных механизмов миграции энергии на клеточном и молекулярном уровнях показало, что решающую роль в них играет транспорт электронов по цепи передатчиков. В отдельных звеньях этой цепи окислительно-восстановительных реакций происходит освобождение небольших порций свободной энергии, примерно соответствующих значениям DF для макроэргических связей АТФ.
Дальнейшее изучение проблем Б., в частности механизмов преобразования химической энергии в работу, требует перехода к рассмотрению этих процессов на субмолекулярном уровне, где вступают в силу законы квантовой физики и химии.
Лит.: Виноградов М. И., Очерки по энергетике мышечной деятельности человека, Л., 1941; Сент-Дьердьи А., Биоэнергетика, пер. с англ., М., 1960; его же, Введение в субмолекулярную биологию, пер. с англ., М., 1964; Пасынский А. Г., Биофизическая химия, М., 1963; Горизонты биохимии. Сб. ст., под ред. Л. А. Тумермана, пер. с англ., М., 1964; Пюльман Б., Пюльман А., Квантовая биохимия, пер. с англ., М., 1965; Ленинджер Л., Митохондрия, пер. с англ., М., 1966; Леман Г., Практическая физиология труда, пер. с нем., М., 1967; Рэкер Э., Биоэнергетические механизмы, пер. с англ., М., 1967; Lehninger A. L., Bioenergetics, N.Y., 1965; Current topics in bioenergetics, ed. D. R. Sanadi, v. 1—2, N. Y., 1966-67.
Л. А. Тумерман.
Бипатриды
Бипатри'ды (от би... и греч. patrís, родительный падеж patrídos — отечество, родина), биполиды, в международном праве лица, состоящие одновременно в гражданстве двух или даже более государств, т. е. имеющие двойное гражданство. Двойное гражданство может возникнуть: 1) при рождении ребёнка от граждан государства, применяющего при определении гражданства принцип «права крови» (ius sanguinus), на территории страны, применяющей принцип «права почвы» (ius soli); 2) при браке женщины с иностранцем, если по законодательству её страны она не исключается из гражданства после вступления в брак, а законодательство страны мужа автоматически предоставляет ей своё гражданство; 3) при перемене гражданства путём натурализации, если отсутствует предварительное согласие на изменение гражданства со стороны государства, гражданином которого был натурализованный. Вопрос о правовом положении Б. возникает в связи с тем, что каждое государство, считающее данное лицо своим гражданином, в принципе может требовать от него выполнения гражданских обязанностей (в частности, воинской). При этом Б. на территории государства, в гражданстве которого он состоит, не может отказываться от выполнения своих гражданских обязанностей, ссылаясь на свои обязанности по отношению к другому государству.
Современное международное право не знает единой общепризнанной регламентации вопросов, возникающих в связи с двойным гражданством. Большинство государств отрицательно относится к совмещению гражданства. Попытки разрешить эту проблему путём заключения специальных двусторонних или многосторонних международных договоров делались ещё в конце 19 в. (например, «Банкрофтовы договоры»).
Проблема Б. неоднократно была предметом рассмотрения международных конференций. 12 апреля 1930 в Гааге была подписана конвенция о некоторых вопросах, относящихся к коллизии законов о гражданстве. Эта конвенция подтвердила, что каждое государство самостоятельно определяет в своём внутреннем законодательстве, кто является его гражданином и какие положения национальных законов должны признаваться другими государствами, если эти положения не противоречат международным конвенциям, международным обычаям и общим принципам права в области гражданства. Каждое государство может считать своим гражданином лицо, которое состоит также гражданином другого государства, однако не может оказывать ему дипломатическую защиту против государства, в гражданстве которого оно также состоит. На территории какого-либо третьего государства за Б. признаётся только гражданство какого-либо одного государства. Конвенция также устанавливала, что лицо, имеющее два гражданства, приобретённых без ясно выраженного волеизъявления с его стороны, может отказаться от одного из них с разрешения соответствующего государства. В том же году в Гааге был подписан протокол относительно военных обязанностей Б., в котором предусматривалось, что лица, обладающие гражданством двух или более государств, обычно проживающие в одном из этих государств и связанные с ним фактически более всего, освобождаются во всех других государствах от военных обязанностей. Имеются также двусторонние соглашения, касающиеся военных обязанностей Б.; например соглашения США с Норвегией (1930), Швецией (1933), Швейцарией (1937) и Финляндией (1939).