Литмир - Электронная Библиотека
Содержание  
A
A

  По степени сложности различают 3 системы Б. организмов. Простейшая, состоящая только из люциферина и люцеферазы, имеется у Cypridina (этот рачок испускает сине-зелёный свет с максимальной длиной волны 440—460 нм), у рыбы Argon и др. Более сложна светящаяся система бактерий. Здесь, кроме люциферина и люциферазы, имеется ещё длинноцепочечный альдегид, т. е. соединение типа

Большая Советская Энциклопедия (БИ) - i-images-156580116.png

где R прямая углеводородная цепочка содержащая от 7 до 14 атомов углерода. Упрощённая схема реакции Б. в этом случае имеет следующий вид:

Большая Советская Энциклопедия (БИ) - i-images-115655079.png

(Здесь ФМН — окисленная форма флавинмононуклеотида, ФМН · H2 — его восстановленная форма, Е — фермент люцифераза.) Бактерии испускают зелёный свет с максимальной длиной волны около 560 нм. Наиболее сложна система Б. у насекомых, например светляков. Их органы Б. испускают вспышки жёлто-зелёного света (около 560 нм.), вызываемые нервными импульсами. Кроме люциферина и люциферазы, для реакции Б. насекомым необходимы АТФ (см. Аденозинфосфорные кислоты) и магний. Энергия, освобождающаяся при гидролизе АТФ (см. Биоэнергетика), видимо, активирует люциферин-люциферазную систему и обеспечивает окисление люциферина с испусканием света. В отсутствии АТФ эта система не работает.

  Предполагают (американский учёный У. Д. Мак-Элрой и др., 1962), что Б. возникла на стадии перехода от анаэробных форм жизни к аэробным, т. е. когда в первоначальной атмосфере Земли начал накапливаться кислород. Вероятно, для существовавших тогда анаэробных организмов кислород был токсичен и преимущество получили организмы, способные быстро восстанавливать его. При этом в ряде случаев выделение энергии в световой форме было выгоднее, чем в тепловой. У простейших биолюминесцирующих форм энергия, освобождающаяся при окислении субстратов, выделялась в форме света или тепла, т. е. пропадала без пользы для организма. Поэтому в ходе дальнейшей эволюции получили преимущество организмы, у которых возник механизм аккумуляции энергии (см. Фосфорилирование окислительное). С появлением таких форм окислительные люминесцентные реакции уже не давали преимуществ при естественном отборе и даже становились вредными. Однако в результате вторичных эволюционных процессов Б. могла сохраниться как рудиментарный признак у отдельных, не связанных друг с другом групп организмов, у которых она приобрела иные функции, например функции полового сигнала у светляков.

  Лит.: Тарасов Н. И., Свечение моря, М., 1956; Мак-Элрой У. Д. и Зелигер Г. Г., Происхождение и эволюция биолюминесценции в кн.: Горизонты биохимии, пер. с англ. М., 1964. Биолюминесценция, [Сб. ст.], М., 1965; Биоэнергетика и биологическая спектрофотометрия, М., 1967.

  Л. А. Тумерман.

Большая Советская Энциклопедия (БИ) - i008-pictures-001-294549864.jpg

Биолюминесценция. Светящийся жук Photurus pensylvanica.

Большая Советская Энциклопедия (БИ) - i008-pictures-001-297077487.jpg

Биолюминесценция. Радиолярия Thalassicolla nucleta.

Большая Советская Энциклопедия (БИ) - i009-001-206295471.jpg

Биолюминесценция. Рыба Photoblepharon palpebratus со светящимся органом, содержащим бактерии (пример симбиоза).

Большая Советская Энциклопедия (БИ) - i009-001-225571539.jpg

Биолюминесценция. Культура светящихся бактерий в их собственном свете.

Большая Советская Энциклопедия (БИ) - i009-001-232732189.jpg

Биолюминесценция. Мёртвая сельдь, покрытая светящимися бактериями.

Большая Советская Энциклопедия (БИ) - i010-001-256801252.jpg

Биолюминесценция. Глубоководный рак Acantherphyra purpurea, выбрасывающий светящуюся жидкость.

Большая Советская Энциклопедия (БИ) - i010-001-256932260.jpg

Биолюминесценция. Глубоководная каракатица Lycoteuthis diadema, выбросившая светящееся облако.

Большая Советская Энциклопедия (БИ) - i010-001-259717849.jpg

Биолюминесценция. Кусок дерева, пронизанный светящейся грибницей.

Биом

Био'м (англ. biome, от греч. bíos — жизнь и лат. -omat-, -oma — окончание, обозначающее совокупность), совокупность видов растений и животных, составляющих живое население данного района. Термин употребляется главным образом в зарубежной экологической и биогеографической литературе. К этому понятию близок термин биота, применяемый к более обширным участкам поверхности земли.

Биомасса

Биома'сса (от био... и масса), общая масса особей одного вида, группы видов или сообщества в целом, приходящаяся на единицу поверхности или объёма местообитания; один из важнейших экологических терминов. Б. чаще всего выражают в массе сырого или сухого вещества (г/м2, кг/га, г/м3 и т.д.) или в пропорциональных ей единицах (масса углерода или азота органических веществ тела и др.).

  Б. растений называется фитомассой, животных — зоомассой. По Б. отдельных компонентов биоценоза, её распределению в пространстве (например, по вертикальным ярусам лесных биоценозов, по глубинам или по разным грунтам в водоёмах) и по её сезонным изменениям судят о количественных соотношениях масс организмов с разным типом питания, о доминировании отдельных видов и т.д. В наземных сообществах (лес, степь, тундра и др.) Б. растений значительно превышает Б. растительноядных животных, которая, в свою очередь, больше Б. хищников (т. н. пирамида Б.). См. также Фитомасса.

  В водной среде растительные организмы представлены главным образом одноклеточными водорослями фитопланктона. Б. фитопланктона мала, нередко меньше Б. питающихся за его счёт животных. Это возможно благодаря интенсивному обмену веществ и фотосинтезу одноклеточных водорослей, обеспечивающему высокую скорость прироста фитопланктона. Годовая продукция фитопланктона в наиболее продуктивных водах не уступает годовой продукции лесов, Б. которых, отнесённая к той же единице поверхности, в тысячи раз больше. Луговые степи дают больший годовой прирост Б., чем хвойные леса: при средней фитомассе 23 т/га годовая продукция их 10 т/га, а у хвойных лесов при фитомассе 200 т/га годовая продукция 6 т/га. Популяции мелких млекопитающих, обладающих большой скоростью роста и размножения, при равной Б. дают более высокую продукцию, чем крупные млекопитающие. Т. о., чтобы оценить значение вида или группы видов для круговорота веществ и биологической продуктивности сообщества или экосистемы, нужно знать не только Б. данного компонента, но и относительная скорость её прироста или время полного возобновления, которое колеблется у разных организмов от многих лет (у древесных растений) до нескольких часов или даже долей часа (у бактерий и некоторых простейших при благоприятных условиях роста).

  Наиболее высока Б. лесов (500 т/га и выше в тропических лесах, около 300 т/га в широколиственных лесах зон умеренного климата). Среди питающихся за счёт растений гетеротрофных организмовнаибольшей Б. обладают микроорганизмы — бактерии, грибы, актиномицеты и др.; их Б. в продуктивных лесах достигает нескольких т/га. Большая часть общей Б. животных в поясе умеренного климата приходится на почвенную фауну (дождевые черви, личинки насекомых, нематоды, многоножки, клещи и др.). В лесной зоне она составляет сотни кг/га, главным образом за счёт дождевых червей (300—900 кг/га). Средняя Б. позвоночных животных достигает 20 кг/га и выше, но чаще остаётся в пределах 3—10 кг/га.

75
{"b":"105920","o":1}