#include ‹string.h›
char string[] = "hello world";
main()
{
int count, i;
int to_par[2], to_chil[2];
/* для каналов родителя и потомка */
char buf[256];
pipe(to_par);
pipe(to_chil);
if (fork() == 0)
{
/* выполнение порожденного процесса */
close(0);
/* закрытие прежнего стандартного ввода */
dup(to_chil[0]);
/* дублирование дескриптора чтения из канала в позицию стандартного ввода */
close(1); /* закрытие прежнего стандартного вывода */
dup(to_par[0]); /* дублирование дескриптора записи в канал в позицию стандартного вывода */
close(to_par[1]); /* закрытие ненужных дескрипторов канала */
close(to_chil[0]);
close(to_par[0]);
close(to_chil[1]);
for (;;)
{
if ((count = read(0, buf, sizeof(buf))) == 0)
exit();
write(1, buf, count);
}
} /* выполнение родительского процесса */
close(1);
/* перенастройка стандартного ввода-вывода */
dup(to_chil[1]);
close(0);
dup(to_par[0]);
close(to_chil[1]);
close(to_par[0]);
close(to_chil[0]);
close(to_par[1]);
for (i = 0; i ‹ 15; i++)
{
write(1, string, strlen(string));
read(0, buf, sizeof(buf));
}
}
Рисунок 7.5. Использование функций pipe, dup и fork
Результаты этой программы не зависят от того, в какой очередности процессы выполняют свои действия. Таким образом, нет никакой разницы, возвращается ли управление родительскому процессу из функции fork раньше или позже, чем порожденному процессу. И так же безразличен порядок, в котором процессы вызывают системные функции перед тем, как войти в свой собственный цикл, ибо они используют идентичные структуры ядра. Если процесс-потомок исполняет функцию read раньше, чем его родитель выполнит write, он будет приостановлен до тех пор, пока родительский процесс не произведет запись в канал и тем самым не возобновит выполнение потомка. Если родительский процесс записывает в канал до того, как его потомок приступит к чтению из канала, первый процесс не сможет в свою очередь считать данные из стандартного ввода, пока второй процесс не прочитает все из своего стандартного ввода и не произведет запись данных в стандартный вывод. С этого места порядок работы жестко фиксирован: каждый процесс завершает выполнение функций read и write и не может выполнить следующую операцию read до тех пор, пока другой процесс не выполнит пару read-write. Родительский процесс после 15 итераций завершает работу; порожденный процесс наталкивается на конец файла («end-of-file»), поскольку канал не связан больше ни с одним из записывающих процессов, и тоже завершает работу. Если порожденный процесс попытается произвести запись в канал после завершения родительского процесса, он получит сигнал о том, что канал не связан ни с одним из процессов чтения.
Мы упомянули о том, что хорошей традицией в программировании является закрытие ненужных файловых дескрипторов. В пользу этого говорят три довода. Во-первых, дескрипторы файлов постоянно находятся под контролем системы, которая накладывает ограничение на их количество. Во-вторых, во время исполнения порожденного процесса присвоение дескрипторов в новом контексте сохраняется (в чем мы еще убедимся). Закрытие ненужных файлов до запуска процесса открывает перед программами возможность исполнения в «стерильных» условиях, свободных от любых неожиданностей, имея открытыми только файлы стандартного ввода-вывода и ошибок. Наконец, функция read для канала возвращает признак конца файла только в том случае, если канал не был открыт для записи ни одним из процессов. Если считывающий процесс будет держать дескриптор записи в канал открытым, он никогда не узнает, закрыл ли записывающий процесс работу на своем конце канала или нет. Вышеприведенная программа не работала бы надлежащим образом, если бы перед входом в цикл выполнения процессом-потомком не были закрыты дескрипторы записи в канал.
7.2 СИГНАЛЫ
Сигналы сообщают процессам о возникновении асинхронных событий. Посылка сигналов производится процессами — друг другу, с помощью функции kill, — или ядром. В версии V (вторая редакция) системы UNIX существуют 19 различных сигналов, которые можно классифицировать следующим образом:
• Сигналы, посылаемые в случае завершения выполнения процесса, то есть тогда, когда процесс выполняет функцию exit или функцию signal с параметром death of child (гибель потомка);
• Сигналы, посылаемые в случае возникновения вызываемых процессом особых ситуаций, таких как обращение к адресу, находящемуся за пределами виртуального адресного пространства процесса, или попытка записи в область памяти, открытую только для чтения (например, текст программы), или попытка исполнения привилегированной команды, а также различные аппаратные ошибки;
• Сигналы, посылаемые во время выполнения системной функции при возникновении неисправимых ошибок, таких как исчерпание системных ресурсов во время выполнения функции exec после освобождения исходного адресного пространства (см. раздел 7.5);
• Сигналы, причиной которых служит возникновение во время выполнения системной функции совершенно неожиданных ошибок, таких как обращение к несуществующей системной функции (процесс передал номер системной функции, который не соответствует ни одной из имеющихся функций), запись в канал, не связанный ни с одним из процессов чтения, а также использование недопустимого значения в параметре «reference» системной функции lseek. Казалось бы, более логично в таких случаях вместо посылки сигнала возвращать код ошибки, однако с практической точки зрения для аварийного завершения процессов, в которых возникают подобные ошибки, более предпочтительным является именно использование сигналов[21];
• Сигналы, посылаемые процессу, который выполняется в режиме задачи, например, сигнал тревоги (alarm), посылаемый по истечении определенного периода времени, или произвольные сигналы, которыми обмениваются процессы, использующие функцию kill;