Литмир - Электронная Библиотека
A
A

Таким образом, ИИ представляет собой продолжение техник анализа данных, которые сначала развивали государственные бюро, затем тайно культивировали спецслужбы, и в конечном счете закрепили интернет-компании в форме глобального бизнеса по надзору и прогнозированию. Однако такая интерпретация – это также не что иное, как взгляд «сверху», фокусирующийся на техниках контроля, а вовсе не на субъектах, над которыми контроль осуществляется. Мишени этой власти («надзорного капитализма» в определении Шошаны Зубофф) обычно описываются как пассивные субъекты, подверженные измерению и контролю, то есть не как акторы, обладающие автономией и собственной «разумностью». В этом заключается проблема критической теории вообще и критических исследований ИИ в частности. Хотя эти исследования и фиксируют воздействие ИИ на общество, они часто упускают из виду, что коллективные знания и труд – главный источник той самой «разумности», которую извлекает, кодирует и превращает в товар ИИ. Более того, их авторы зачастую не способны оценить вклад социальных форм и сил в ключевые этапы технологических изобретений и разработок. По-настоящему критическая интервенция должна бросить вызов гегемонистской позиции ИИ как уникального «хозяина» коллективного разума. Выступая против образовательной иерархии, итальянский философ Антонио Грамши однажды заявил, что «все люди – интеллектуалы»[49]. Аналогичным образом в этой книге я стремлюсь показать центральную роль социального интеллекта, поставляющего данные и расширяющего возможности ИИ. В ней также выдвинут более радикальный тезис, согласно которому именно социальный интеллект формирует изнутри саму структуру алгоритмов ИИ.

Моя книга задумана как экскурс в техническую и социальную историю ИИ и основана на социотехническом историческом подходе, который способен показать, какие экономические и политические факторы повлияли на внутреннюю логику ИИ. Вместо того, чтобы встать на сторону привычного социального конструктивизма и попытаться выйти за рамки новаторских идей социальной информатики, я применяю к ИИ метод исторической эпистемологии, который в истории науки продвигали, каждый по-своему, Борис Гессен, Генрик Гроссман, Жорж Кангийем и Гастон Башляр. Из недавних работ в этом направлении я выделяю исследования Института истории науки Макса Планка в Берлине[50]. Если социальный конструктивизм в целом подчеркивает влияние внешних факторов на науку и технику, историческая эпистемология делает акцент на диалектическое развертывание социальной практики, орудий труда и научных абстракций внутри экономической динамики. В этой книге я подхожу к изучению ИИ и алгоритмического мышления точно так же, как историческая и политическая эпистемология изучает роль механического мышления и научных абстракций (например, число и пространство) в социально-экономических преобразованиях Нового времени[51].

В последние десятилетия политическую эпистемологию науки и технологий продвигали исследовательницы-феминистки – Хилари Роуз, Сандра Хардинг, Эвелин Фокс Келлер, Сильвия Федеричи и другие. Они убедительно показали, как возникновение современной рациональности и механического мышления (к которому относится ИИ) связано с превращением женского тела и коллективного тела вообще в послушную производительную машину[52]. В традиции политической эпистемологии мы еще должны обратить внимание на анализ трудового процесса, предложенный Гарри Браверманом в работе «Труд и монополистический капитал» (Labor and Monopoly Capital; 1974), а также на исследования итальянских рабочих, проводившиеся операистами, в частности, Романо Альквати на заводе ЭВМ Olivetti в Ивреа еще в 1960 году[53]. Браверман и Альквати – авторы влиятельных работ, в которых впервые показано, что проекты автоматизации вычислений Бэббиджа в XIX веке и кибернетика XX века неотъемлемо связаны с трудом и его организацией.

Автоматизация познания как распознавание паттернов

Перевод трудового процесса сначала в логическую процедуру, а затем в технический артефакт редко протекает просто и безотказно; чаще это путь проб и ошибок. В этом смысле название книги[54] содержит не только политическую, но и техническую аналогию. Оно иронически сигнализирует, что нынешняя парадигма ИИ амбивалентна: она возникла вовсе не из когнитивных теорий, как верят некоторые, а из спорных экспериментов по автоматизации перцептивного труда, то есть распознавания паттернов[55]. Глубокое обучение начиналось как расширение методов распознавания визуальных образов, разработанных в 1950‑е годы, на невизуальные данные – текст, аудио, видео и поведенческие материалы самого разного происхождения. Подъем глубокого обучения начался в 2012 году, когда сверточная нейронная сеть AlexNet выиграла конкурс компьютерного зрения ImageNet. С тех пор термин «ИИ» стал по умолчанию обозначать парадигму искусственных нейронных сетей, которая в 1950‑х годах, напротив, считалась конкурентом ИИ (пример противоречий, характеризующих его «рациональность»)[56]. Стюарт и Хьюберт Дрейфусы осветили эту коллизию в эссе 1988 года «Создание сознания vs моделирование мозга», в котором обрисовали две родословные ИИ – символическую и коннекционистскую. Cудьба этих подходов, основанных на разных логических постулатах, сложилась по-разному[57].

Символический ИИ – это родословная, связанная с Дартмутским семинаром 1956 года, на котором Джон Маккарти предложил небесспорный термин «искусственный интеллект»[58]. На основе символического ИИ были разработаны программы Logic Theorist и General Problem Solver, а также множество экспертных систем и машин логического вывода, оказавшихся тривиальными и склонными к комбинаторному взрыву. Коннекционизм в свою очередь представляет родословную искусственных нейронных сетей, созданных Фрэнком Розенблаттом в 1957 году. Изобретенный им «перцептрон» в 1980‑х годах развился в сверточные нейронные сети и в конечном итоге породил архитектуру глубокого обучения, которая доминирует в этой области с 2010‑х.

Обе родословные развивают разные виды логики и эпистемологии. Символический подход утверждает, что разумность – это представление мира (знание-что), которое можно формализовать в виде суждений и, следовательно, механизировать согласно дедуктивной логике. Согласно коннекционистскому подходу, разумность представляет собой опыт мира (знание-как), и этот опыт можно реализовать в приближенных моделях, построенных по индуктивной логике. Что бы ни утверждали корпоративная пропаганда и вычислительные философии разума, ни одна из двух парадигм не смогла полностью имитировать человеческий интеллект. Однако нельзя отрицать, что машинное обучение и глубокие искусственные нейронные сети оказались очень успешными в распознавании паттернов и, как следствие, автоматизации многочисленных задач, благодаря высокой разрешающей способности при обсчете многомерных данных. Двигаясь против традиции, которая воспроизводит чрезмерно знаменитую сагу о Дартмутском семинаре, в книге я концентрируюсь на более убедительной истории ИИ, связанной с происхождением искусственных нейронных сетей, коннекционизмом и машинным обучением. По этому направлению, особенно в том, что касается работы Розенблатта, критической и обстоятельной литературы все еще не хватает.

Структура книги

Книга состоит из трех частей. В вводной части речь идет о вопросах методологии, а две основных посвящены истории – индустриальной и информационной эпохам соответственно. При этом в книге нет линейной истории технологии и автоматизации. Скорее, каждую главу можно читать как независимый «семинар» по изучению алгоритмических практик и машинного разума.

вернуться

49

Цитата из эссе «Формирование интеллигенции» из «Тюремных тетрадей» Грамши. – Прим. ред.

вернуться

50

Критику социального конструктивизма см.: Winner L. Upon Opening the Black Box and Finding It Empty: Social Constructivism and the Philosophy of Technology // Science, Technology, and Human Values 18, no. 3 (1993): 362–378. Обзор исторической эпистемологии см.: Renn J. The Evolution of Knowledge: Rethinking Science for the Anthropocene, Princeton, NJ: Princeton University Press, 2020; Omodeo P. D. Political Epistemology: The Problem of Ideology in Science Studies. Berlin: Springer, 2019; Schmidgen H. History of Science // The Routledge Companion to Literature and Science. Bruce Clarke and Manuela Rossini (eds). London: Routledge, 2011.

вернуться

51

О понятии числа см. главу 1. О механическом мышлении см.: Damerow P. et al. Exploring the Limits of Preclassical Mechanics: A Study of Conceptual Development in Early Modern Science. 2nd ed. New York: Springer, 2004; Schemmel M. Historical Epistemology of Space: From Primate Cognition to Spacetime Physics. New York: Springer, 2015.

вернуться

52

Rose H. and Rose St. (eds). The Radicalisation of Science. London: Macmillan, 1976; Harding S. The Science Question in Feminism. Ithaca, NY: Cornell University Press, 1986; Keller E. F. Reflections on Gender and Science. New Haven, CT: Yale University Press, 1985; Federici S. Caliban and the Witch: Women, the Body, and Primitive Accumulation. New York: Autonomedia, 2004.

вернуться

53

См. главу 5. О новом подходе к исследованию рабочих см.: Woodcock J. Towards a Digital Workerism: Workers’ Inquiry, Methods, and Technologies // Nanoethics 15 (2021): 87–98.

вернуться

54

Имеется в виду название книги в оригинале (The Eye of the Master). Напомню, что «хозяйский глаз» – выражение Фридриха Энгельса. – Прим. пер.

вернуться

55

Термины «хозяин» [master] и «паттерн» имеют общую политическую этимологию. Английский термин «паттерн» происходит от французского patron и латинского patronus. Последние два слова имеют общий корень с английскими словами «отеческий» [paternal] и «отец» [father] и восходят к латинскому pater. Латинское patronus означает также «защитник», в том числе защитник слуг. Французское patron – это «лидер», «начальник» и «глава сообщества», что в патриархальном контексте подразумевает «образец для подражания».

вернуться

56

AlexNet была сверточной нейронной сетью нового поколения, названной в честь Алекса Крижевского, ученика Джеффри Хинтона. Принято считать, что следующая статья знаменует собой начало эры глубокого обучения: Krizhevsky A., Sutskever I., and Hinton G. Imagenet Classification with Deep Convolutional Neural Networks // Advances in Neural Information Processing Systems 25 (2012): 1097–105. См. также: Cardon D., Cointet J.-Ph., and Mazières A. Neurons Spike Back: The Invention of Inductive Machines and the Artificial Intelligence Controversy // Elizabeth Libbrecht (trans.). Réseaux 211, no. 5 (2018): 173–220.

вернуться

57

Дрейфус Х.Л., Дрейфус С.И. Создание сознания vs. моделирование мозга: искусственный интеллект вернулся на точку ветвления // Аналитическая философия: становление и развитие. М.: Дом интеллектуальной книги, Прогресс-Традиция, 1998. С. 401–432.

вернуться

58

McCarthy J. et al. A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence. 31 August 1955, AI Magazine 27, no. 4 (2006).

5
{"b":"905491","o":1}