Литмир - Электронная Библиотека
A
A

Полудетское удивление внезапно схватывает своеобразие советского проекта: кибернетика, а затем «искусственный интеллект» в СССР развивались как управленческая парадигма, призванная в первую очередь решать задачи плановой экономики, которая сталкивалась с нехваткой необходимых показателей. Вокруг термина «искусственный интеллект» – самой возможности машины мыслить – велись оживленные дискуссии в научных кругах в 1950-х и начале 1960-х годов, и лишь позднее он был аккомодирован в исследованиях и разработках. В 1968 году философ Эдвард Ильенков доказывал, что машинное мышление принципиально невозможно и, более того, разговоры об этом уводят от сути вопроса. «Проблема “Человек – Машина”, если покопаться в ней чуть поглубже, оказывается на поверку проблемой отношения Человека к Человеку, или, как выразился бы философ старой закалки, проблемой отношения Человека к самому себе, хотя отношения и не прямого, а “опосредствованного” через Машину», – это утверждение советского марксиста очень близко к тому, что говорит Пасквинелли[6]. Последние исследования показывают, что на институциональную и культурную форму ИИ в СССР повлияло как нежелание признавать за машиной способность мыслить, так и общая ориентация на «ситуационное управление», за счет чего центральную проблему искусственного интеллекта начали понимать как контроль в комплексных системах (например, производстве и логистике)[7]. Но и на Западе, как утверждает автор этой книги, развитие ИИ стало продолжением «революции контроля», определившей рост информационных технологий в современном мире.

Главы книги Пасквинелли можно читать не последовательно: они похожи на отдельные исследовательские семинары, связанные общей перспективой и сквозными примерами. Сложный материал комбинируется с многообразием сюжетов, что требует от читателя внимания и концентрации. Однако усилия вознаградятся. Конечно, реконструированный ИИ предстает величественным и пугающим средоточием всеобъемлющей парадигмы «глаза Хозяина», эдаким гиперобъектом (если воспользоваться термином Тимоти Мортона), который подчиняет человеческий опыт алгоритмической логике квантификации, эффективности и оптимизации. Но вместе с тем интеллектуальное путешествие, предпринятое итальянским философом, оказывает духоподъемное и освобождающее воздействие. Лишая мистической автономности «верховный алгоритм», книга не приносит готовых рецептов того, как его расплести, но по меньшей мере определяет направление движения: вопрос о власти машин над человечеством есть вопрос политический, и ответ на него в конечном счете лежит в сфере отношений между людьми.

Иван Напреенко,

социолог, редактор журнала «Социология власти» и сайта о книгах и чтении «Горький»

Февраль 2024

Введение: ИИ как разделение труда

Частичное искусство отдельного машинного рабочего, подвергшегося опустошению, исчезает как ничтожная и не имеющая никакого значения деталь перед наукой, перед колоссальными силами природы и перед общественным массовым трудом, воплощенными в системе машин и создающими вместе с последней власть «хозяина»[8].

Карл Маркс, «Капитал», 1867 г.

Все люди являются интеллектуалами… Это означает, что если можно говорить об интеллигентах, то нельзя говорить о неинтеллектуалах, ибо неинтеллектуалов не существует. <…> Нет такой человеческой деятельности, из которой можно было бы исключить всякое интеллектуальное вмешательство, нельзя отделить homo faber от homo sapiens[9].

Антонио Грамши, «Тюремные тетради», 1932 г.[10]

В XX веке мало кому пришло бы в голову считать водителя грузовика работником умственного труда, иначе говоря, интеллектуалом. Однако в начале XXI века внедрение искусственного интеллекта (ИИ)[11] в беспилотные транспортные средства и другие артефакты побудило иначе взглянуть на ручные навыки, в частности, на вождение, и обнаружить, что самое ценное в труде никогда не сводилось к ручному компоненту, а включало в себя когнитивные и кооперативные аспекты. Нужно признать, что благодаря исследованиям ИИ водители грузовиков примкнули к интеллектуалам[12]. В этом есть парадокс и вместе с тем горькое политическое откровение: понадобилось усерднейшим образом развивать автоматизацию, чтобы увидеть, насколько глубоко «интеллектуальные способности» проявлены в занятиях и работах, которые традиционно считались сугубо ручными и неквалифицированными, – настолько, что ими пренебрегали и профсоюзы, и критическая теория. В нынешнюю цифровую эпоху лишь немногие социологи, например Ричард Сеннет, взяли на себя труд утверждать, что «делать значит думать». Этот же тезис историки науки Лисса Роберт и Саймон Шаффер выразили в изящном образе «разумной руки», которая и в ренессансной мастерской, и в индустриальную эпоху не сводилась к мышечной силе, направляя проектирование, изобретательство и научные прорывы[13]. Отрицание разумности ручного труда и общественной деятельности, наблюдаемое нами сегодня, по-видимому, представляет собой симптом избыточного роста цифровой сферы и дематериализацию человеческой деятельности, которые нагнетают вокруг ИИ ауру таинственности.

Что такое ИИ? Согласно господствующей точке зрения речь идет о попытке «разгадать загадку разумности» [intelligence]. Ключ якобы лежит в тайной логике ума [mind] или в глубинной физиологии мозга, например в сложных нейронных сетях. В этой книге я утверждаю обратное: внутренний код ИИ заключается в имитации не биологического разума, а разумности труда и общественных отношений. Сегодня представляется очевидным, что ИИ – проект, направленный на сбор знаний, выраженных в индивидуальном и коллективном поведении, и их перекодирование в алгоритмические модели с целью автоматизации самых разных задач – от распознавания паттернов[14] и манипулирования объектами до перевода с языка на язык и принятия решений. Как это бывает с типичными эффектами идеологии, «ключ» к загадке лежит на самом видном месте, но никто его не замечает – да и не хочет замечать.

Вернемся к беспилотным автомобилям. Какую работу выполняет водитель? И в какой степени ИИ cпособен эту деятельность автоматизировать? Беспилотное транспортное средство призвано имитировать – с высокой долей приближения и в условиях значительной неопределенности – все микрорешения, которые принимает водитель на оживленной дороге[15]. Искусственные нейронные сети «учатся» корреляциям между визуальным восприятием среды и механическим контролем транспортного средства (рулевое управление, ускорение, торможение), а также этическим решениям, которые в случае опасности необходимо принять за несколько миллисекунд. Вождение требует высоких когнитивных навыков, которые нельзя заменить импровизацией, и умения быстро решать задачи. Навыки вырабатываются только привычкой и тренировками – процессами, которые нельзя назвать полностью осознанными. Вождение остается, по существу, социальной и кооперативной деятельностью, регулирующейся кодифицированными правилами (включая правовые ограничения) и спонтанными элементами, к которым относится неявный культурный код – в каждой местности он свой. Считается, что закодировать такую сложную деятельность непросто, и даже бизнесмен Илон Маск признал (после не столь уж и малочисленных аварий автомобилей Tesla со смертельным исходом), что «обобщенное беспилотное вождение – это трудная проблема»[16]. Как бы то ни было, все сложности, с которыми столкнулся промышленный проект беспилотных транспортных средств, ясно показали, что задача вождения не сугубо «механическая». И если навык вождения можно перевести в алгоритмическую модель, то лишь потому, что это логическая деятельность, поскольку в конечном счете всякий труд логичен[17].

вернуться

6

См.: Ильенков Э. Об идолах и идеалах. М.: Политиздат, 1968. С. 32

вернуться

7

Kirtchik O. The Soviet scientific programme on AI: if a machine cannot ‘think’, can it ‘control’?// BJHS Themes, 2023. P. 8, 111–125.

вернуться

8

Маркс К. Капитал. Т. I. М.: Государственное издательство политической литературы, 1952. С. 429. Маркс также отмечает: «Позже мы увидим, что «хозяева» начинают петь совсем по-другому, когда им угрожает потеря их «живых» автоматов» (см.: Там же). – Здесь и далее, если не указано иное, прим. автора.

вернуться

9

Грамши А. Тюремные тетради. Ч. I. C. 343. М.: Издательство политической литературы, 1991.

вернуться

10

Перевод скорректирован: итальянский термин gli intellettuali соответствует русскому слову «интеллектуалы» (в англоязычной традиции его передают как intellectuals). Однако в советской традиции перевода, ведущей отсчет с 1950‑х гг., устоялся вариант «интеллигенты», который в силу конкретно-исторических коннотаций сужает понятие Грамши. При этом философ, безусловно, был прекрасно знаком с ролью, которая приписывалась интеллигенции в российской революционной традиции, и в размышлениях об особой социальной роли интеллектуалов отталкивался в том числе от этого. – Прим. пер.

вернуться

11

В России сложилась традиция переводить словосочетание artificial intelligence как «искусственный интеллект». «Интеллект» в русском языке соотносится с английским intellect, под которым подразумевается способность понимать и объяснять (ср. «разум»), однако у intelligence прямого аналога в русском нет, это слово означает способность получать и применять на практике знания и навыки (ср. «разумность»). В случаях употребления слова intelligence с определениями я буду следовать сложившейся традиции перевода. В случаях обособленного словоупотребления intelligence, помимо вариантов «интеллект» и «интеллектуальные способности», я буду также использовать слово «разумность», делая акцент на наблюдаемом комплексе качеств, которые указывают на их глубинный источник (собственно, разум) в случае с живыми существами. – Прим. пер.

вернуться

12

Согласно Грамши, чья цитата открывает книгу, все люди могут считаться интеллектуалами в том смысле, что не существует труда, в котором отсутствует хотя бы «минимум созидательной интеллектуальной деятельности». Однако, как тут же поясняет философ, «не все люди выполняют в обществе функции интеллектуалов (так, о том, кто жарит себе яичницу или пришивает заплату на куртку, не скажут, что он является поваром или портным)» (см.: Там же). – Прим. пер.

вернуться

13

Сеннет Р. Мастер. М.: Strelka Press, 2018; Roberts L. and Schaffer S. (eds). The Mindful Hand: Inquiry and Invention from the Late Renaissance to Early Industrialisation. Chicago: University of Chicago Press, 2007. О роли физического прикосновения в цифровую эпоху см.: Ladewig R. and Schmidgen H. (eds). Body and Society 28. Nos. 1–2. Special issue. Symmetries of Touch: Reconsidering Tactility in the Age of Ubiquitous Computing (2012).

вернуться

14

В случаях, когда речь идет о распознавании сугубо визуальных данных, которое исторически предшествует экстраполяции метода на невизуальную информацию, я использую устоявшийся перевод «распознавание образов». В других случаях, когда речь идет о расширенном применении метода, – «распознавание паттернов». – Прим. пер.

вернуться

15

В начале 1960‑х годов Романо Альквати определил информацию как новаторские микрорешения, которые принимают работники в процессе производства (см. главу 5 этой книги). См. также: Pasquinelli M. Italian Operaismo and the Information Machine // Theory, Culture and Society 32, no. 3 (2015): 49–68; Sprenger F. Microdecisions and Autonomy in Self-Driving Cars: Virtual Probabilities // AI and Society (2020): 1–16.

вернуться

16

Hawkins A. J. Elon Musk Just Now Realizing That Self-Driving Cars Are a «Hard Problem» // theverge.com. 5 July 2021.

вернуться

17

См. также: A Manifesto // Logic Magazine. Issue 1. March 2017.

2
{"b":"905491","o":1}