Полудетское удивление внезапно схватывает своеобразие советского проекта: кибернетика, а затем «искусственный интеллект» в СССР развивались как управленческая парадигма, призванная в первую очередь решать задачи плановой экономики, которая сталкивалась с нехваткой необходимых показателей. Вокруг термина «искусственный интеллект» – самой возможности машины мыслить – велись оживленные дискуссии в научных кругах в 1950-х и начале 1960-х годов, и лишь позднее он был аккомодирован в исследованиях и разработках. В 1968 году философ Эдвард Ильенков доказывал, что машинное мышление принципиально невозможно и, более того, разговоры об этом уводят от сути вопроса. «Проблема “Человек – Машина”, если покопаться в ней чуть поглубже, оказывается на поверку проблемой отношения Человека к Человеку, или, как выразился бы философ старой закалки, проблемой отношения Человека к самому себе, хотя отношения и не прямого, а “опосредствованного” через Машину», – это утверждение советского марксиста очень близко к тому, что говорит Пасквинелли[6]. Последние исследования показывают, что на институциональную и культурную форму ИИ в СССР повлияло как нежелание признавать за машиной способность мыслить, так и общая ориентация на «ситуационное управление», за счет чего центральную проблему искусственного интеллекта начали понимать как контроль в комплексных системах (например, производстве и логистике)[7]. Но и на Западе, как утверждает автор этой книги, развитие ИИ стало продолжением «революции контроля», определившей рост информационных технологий в современном мире.
Главы книги Пасквинелли можно читать не последовательно: они похожи на отдельные исследовательские семинары, связанные общей перспективой и сквозными примерами. Сложный материал комбинируется с многообразием сюжетов, что требует от читателя внимания и концентрации. Однако усилия вознаградятся. Конечно, реконструированный ИИ предстает величественным и пугающим средоточием всеобъемлющей парадигмы «глаза Хозяина», эдаким гиперобъектом (если воспользоваться термином Тимоти Мортона), который подчиняет человеческий опыт алгоритмической логике квантификации, эффективности и оптимизации. Но вместе с тем интеллектуальное путешествие, предпринятое итальянским философом, оказывает духоподъемное и освобождающее воздействие. Лишая мистической автономности «верховный алгоритм», книга не приносит готовых рецептов того, как его расплести, но по меньшей мере определяет направление движения: вопрос о власти машин над человечеством есть вопрос политический, и ответ на него в конечном счете лежит в сфере отношений между людьми.
Иван Напреенко,
социолог, редактор журнала «Социология власти» и сайта о книгах и чтении «Горький»
Февраль 2024
Введение: ИИ как разделение труда
Частичное искусство отдельного машинного рабочего, подвергшегося опустошению, исчезает как ничтожная и не имеющая никакого значения деталь перед наукой, перед колоссальными силами природы и перед общественным массовым трудом, воплощенными в системе машин и создающими вместе с последней власть «хозяина»[8].
Карл Маркс, «Капитал», 1867 г.
Все люди являются интеллектуалами… Это означает, что если можно говорить об интеллигентах, то нельзя говорить о неинтеллектуалах, ибо неинтеллектуалов не существует. <…> Нет такой человеческой деятельности, из которой можно было бы исключить всякое интеллектуальное вмешательство, нельзя отделить homo faber от homo sapiens[9].
Антонио Грамши, «Тюремные тетради», 1932 г.[10]
В XX веке мало кому пришло бы в голову считать водителя грузовика работником умственного труда, иначе говоря, интеллектуалом. Однако в начале XXI века внедрение искусственного интеллекта (ИИ)[11] в беспилотные транспортные средства и другие артефакты побудило иначе взглянуть на ручные навыки, в частности, на вождение, и обнаружить, что самое ценное в труде никогда не сводилось к ручному компоненту, а включало в себя когнитивные и кооперативные аспекты. Нужно признать, что благодаря исследованиям ИИ водители грузовиков примкнули к интеллектуалам[12]. В этом есть парадокс и вместе с тем горькое политическое откровение: понадобилось усерднейшим образом развивать автоматизацию, чтобы увидеть, насколько глубоко «интеллектуальные способности» проявлены в занятиях и работах, которые традиционно считались сугубо ручными и неквалифицированными, – настолько, что ими пренебрегали и профсоюзы, и критическая теория. В нынешнюю цифровую эпоху лишь немногие социологи, например Ричард Сеннет, взяли на себя труд утверждать, что «делать значит думать». Этот же тезис историки науки Лисса Роберт и Саймон Шаффер выразили в изящном образе «разумной руки», которая и в ренессансной мастерской, и в индустриальную эпоху не сводилась к мышечной силе, направляя проектирование, изобретательство и научные прорывы[13]. Отрицание разумности ручного труда и общественной деятельности, наблюдаемое нами сегодня, по-видимому, представляет собой симптом избыточного роста цифровой сферы и дематериализацию человеческой деятельности, которые нагнетают вокруг ИИ ауру таинственности.
Что такое ИИ? Согласно господствующей точке зрения речь идет о попытке «разгадать загадку разумности» [intelligence]. Ключ якобы лежит в тайной логике ума [mind] или в глубинной физиологии мозга, например в сложных нейронных сетях. В этой книге я утверждаю обратное: внутренний код ИИ заключается в имитации не биологического разума, а разумности труда и общественных отношений. Сегодня представляется очевидным, что ИИ – проект, направленный на сбор знаний, выраженных в индивидуальном и коллективном поведении, и их перекодирование в алгоритмические модели с целью автоматизации самых разных задач – от распознавания паттернов[14] и манипулирования объектами до перевода с языка на язык и принятия решений. Как это бывает с типичными эффектами идеологии, «ключ» к загадке лежит на самом видном месте, но никто его не замечает – да и не хочет замечать.
Вернемся к беспилотным автомобилям. Какую работу выполняет водитель? И в какой степени ИИ cпособен эту деятельность автоматизировать? Беспилотное транспортное средство призвано имитировать – с высокой долей приближения и в условиях значительной неопределенности – все микрорешения, которые принимает водитель на оживленной дороге[15]. Искусственные нейронные сети «учатся» корреляциям между визуальным восприятием среды и механическим контролем транспортного средства (рулевое управление, ускорение, торможение), а также этическим решениям, которые в случае опасности необходимо принять за несколько миллисекунд. Вождение требует высоких когнитивных навыков, которые нельзя заменить импровизацией, и умения быстро решать задачи. Навыки вырабатываются только привычкой и тренировками – процессами, которые нельзя назвать полностью осознанными. Вождение остается, по существу, социальной и кооперативной деятельностью, регулирующейся кодифицированными правилами (включая правовые ограничения) и спонтанными элементами, к которым относится неявный культурный код – в каждой местности он свой. Считается, что закодировать такую сложную деятельность непросто, и даже бизнесмен Илон Маск признал (после не столь уж и малочисленных аварий автомобилей Tesla со смертельным исходом), что «обобщенное беспилотное вождение – это трудная проблема»[16]. Как бы то ни было, все сложности, с которыми столкнулся промышленный проект беспилотных транспортных средств, ясно показали, что задача вождения не сугубо «механическая». И если навык вождения можно перевести в алгоритмическую модель, то лишь потому, что это логическая деятельность, поскольку в конечном счете всякий труд логичен[17].