Литмир - Электронная Библиотека
A
A

Молодой Тьюринг описывает разделение вычислительных задач между «хозяевами», «слугами» и «девушками» безжалостно. Это напоминает то, как Эндрю Юр в готическом ключе описывал фабрику викторианской эпохи: «огромный автомат, состоящий из различных механических и интеллектуальных органов, действующих в непрерывной заботе о производстве общего объекта и подчиненных саморегулирующейся движущей силе»[33]. Схожим образом Тьюринг воображает разумный автомат, который в будущем будет программировать себя сам, заменив как хозяев, так и слуг. Сегодня видению Тьюринга противостоит армия рабочих-призраков с Глобального юга, которые, как документально доказывают Мэри Грей и Сиддхарт Сури, убраны из поля зрения, чтобы шоу машинной автономии продолжалось[34]. Тьюринг бы счел это парадоксом, но ИИ в основном заместил хозяев, то есть управляющих, а не слуг – рабочие нужны (и всегда будут нужны), с одной стороны, чтобы производить данные и значения для ненасытных конвейеров ИИ и его глобальных монополий, а с другой стороны, чтобы обслуживать мега-машину, фильтруя контент, проверяя безопасность, бесконечно оценивая и оптимизируя. Как отмечают гендерные исследовательницы Неда Атанасоски и Калинди Вора, мечты о полной автоматизации и ИИ, подобные тем, что озвучивает Тьюринг, не нейтральны. Они исторически укоренены в существовании «суррогатного человечества» – рабов, слуг, пролетариев и женщин, которые невидимым трудом сделали возможным универсалистский идеал свободного и автономного (белого) субъекта[35].

Множественные истории ИИ

Написание истории ИИ в нынешней непростой ситуации требует принимать в расчет обширную идеологическую конструкцию: в компаниях Кремниевой долины и высокотехнологичных университетах пропаганда всемогущества ИИ стала нормой и порой даже принимает форму фольклорных представлений о машине, обретающей «сверхчеловеческий разум» и «самосознание». Хорошей иллюстрацией подобных представлений служит апокалиптический нарратив из «Терминатора», согласно которому системы ИИ достигли технологической сингулярности и стали представлять «экзистенциальную угрозу» для выживания человечества на планете – именно это проповедует среди прочих футуролог Ник Бостром[36]. В мифологиях технологической автономии и машинного интеллекта ничего нового нет: они были придуманы в индустриальную эпоху для мистификации роли рабочих и субалтернов[37]. Описывая культ автоматов в эпоху Бэббиджа, Шаффер сформулировал это так: «Чтобы машины казались разумными, требовалось спрятать источник энергии, то есть рабочие руки, которые их поддерживали и направляли»[38].

Помимо спекулятивных нарративов, которые никогда не вдаются в достаточные технические подробности, чтобы прояснить, какие именно алгоритмы реализуют «сверхинтеллект» (super-intelligence), сегодня можно найти множество технических историй ИИ, призванных сделать понятными его сложные алгоритмы[39]. Соответствующие технические обзоры часто выражают ожидания корпораций от «верховного алгоритма»: чтобы он, с чудесной скоростью сжимая данные, решал перцептивные и когнитивные задачи. Именно так неромантично описывается метрика, по которой оценивают «разумность» систем[40]. Эти публикации обычно игнорируют исторический контекст и социальные последствия автоматизации и рисуют линейную историю математических достижений, укрепляя тем самым технологический детерминизм[41]. К техническим историям ИИ следует также отнести когнитивную науку, поскольку она в значительной степени развивалась под влиянием компьютерной науки. Эпохальный двухтомник Маргарет Боден «Ум как машина» (Mind as Machine; 2006) остается, пожалуй, самой подробной историей ИИ как когнитивной науки и показывает сложную генеалогию проекта без какого-либо идеологического пафоса.

Сопротивляясь узкотехническим подходам, все большее число авторов рассматривают социальные последствия ИИ с точки зрения рабочих, сообществ, меньшинств и общества в целом. Эти авторы ставят под вопрос виртуозность алгоритмов, которые якобы «разумны», но по факту усиливают неравенство, усугубляют гендерные и расовые предубеждения и укрепляют новую форму извлечения знаний. Благодаря книгам «Убийственно большие данные» (2016) Кэти О’Нил, «Алгоритмы угнетения» (2018) Сафии Нобл, «Гонка за технологиями» (2019) Рухи Беньямин, «Дискриминация данных» (2021) Уэнди Чан (Цюань Сицин) и другим работам расширяется новая область знания – критические исследования ИИ[42]. В основе этого направления лежат более ранние исследования ИИ, кибернетики и рациональности времен холодной войны, среди которых стоит упомянуть «Искусственное понимание» (1998) Элисон Адамс, «Вычисления и человеческий опыт» (1997) Филипа Агре, «Закрытый мир» (1996) Пола Эдвардса, «Возможности вычислительных машин и человеческий разум» (1976) Джозефа Вайценбаума и статью Хьюберта Дрейфуса «Алхимия и искусственный интеллект» (1965) для корпорации RAND (эту работу обычно считают первой философской критикой ИИ)[43].

Размещая свою книгу внутри растущего корпуса критических работ, я стремлюсь осветить социальную генеалогию ИИ и, что важнее, точку зрения социальных классов, которые развивают ИИ как особое представление о мире и особую эпистемологию. На формирование информационных технологий и ИИ в XX веке воздействовали различные социальные группы и конфигурации власти. Можно сказать, что парадигмы механического мышления (а затем и машинного интеллекта) возникли в разное время и разными способами не на плечах гигантов, а на плечах торговцев, солдат, командиров, бюрократов, шпионов, промышленников, менеджеров и рабочих[44]. Автоматизация труда представляет собой ключевой аспект каждой из этих генеалогий, но историография технологий часто это игнорирует, предпочитая взгляд «сверху».

Например, согласно популярной точке зрения подъем кибернетики, цифровых вычислений и ИИ детерминистски объясняется обильными финансовыми вливаниями со стороны Пентагона в годы Второй мировой и период холодной войны[45]. Однако недавние исследования показали, что архипелаг «военной рациональности» был нестабилен и на нем культивировались только парадигмы, имевшие ключевое значение в моделировании гонки вооружений и логистических проблем, – теория игр и программирование линейных перемещений[46]. Как бы то ни было, государственный аппарат начал влиять на информационные технологии задолго до военной гонки Второй мировой. Автоматизация поиска, выдачи информации и статистического анализа начали применяться с целью механизировать государственную бюрократию и работу правительства по меньшей мере с переписи 1890 года, когда Герман Холлерит представил табулятор для обработки перфокарт. «Правительственная машина», по выражению Джона Агара, предвосхитила появление в эпоху цифровых технологий крупных центров обработки данных, к которым причастны не только интернет-компании, но и спецслужбы, что во всех подробностях описали математик Крис Уиггинс и историк Мэтью Л. Джонс[47]. Коротко говоря, свыше 100 лет сбор «больших данных» об обществе и его поведении стимулировал развитие информационных технологий – от табулятора Холлерита до машинного обучения[48].

вернуться

33

Ure A. The Philosophy of Manufactures. London: Charles Knight, 1835. P, 13–14.

вернуться

34

Gray M. and Suri S. Ghost Work: How to Stop Silicon Valley from Building a New Global Underclass. New York: Houghton Mifflin Harcourt, 2019. См. также: Irani L. The Cultural Work of Microwork // New Media and Society 17, no. 5, 2013: 720–739; Irani L. and Silberman M. S. Turkopticon: Interrupting Worker Invisibility in Amazon Mechanical Turk // Proceedings of CHI 2013. 28 April – 2 May 2013.

вернуться

35

Atanasoski N. and Kalindi V. Surrogate Humanity: Race, Robots, and the Politics of Technological Futures. Durham, NC: Duke University Press, 2019.

вернуться

36

Бостром Н. Искусственный интеллект. Этапы. Угрозы. Стратегии. М: Манн, Иванов и Фербер, 2016.

вернуться

37

Schaffer S. Babbage’s Dancer and the Impresarios of Mechanism // Cultural Babbage: Technology, Time and Invention. Francis Spufford and Jenny Uglow (eds). London: Faber & Faber, 1996; Schaffer S. Enlightened Automata // The Sciences in Enlightened Europe. William Clark, Jan Golinski, and Simon Schaffer (eds). Chicago: University of Chicago Press, 1999; Truitt E. R. Medieval Robots: Mechanism, Magic, Nature, and Art. Philadelphia: University of Pennsylvania Press, 2015; Voskuhl A. Androids in the Enlightenment: Mechanics, Artisans, and Cultures of the Self. Chicago: University of Chicago Press, 2013.

вернуться

38

Schaffer S. Babbage’s Intelligence: Calculating Engines and the Factory System // Critical Inquiry 21, no. 1 (1994): 204. См. также: Geoghegan B. Orientalism and Informatics: The Alterity in Artificial Intelligence, from the Chess-Playing Turk to Amazon’s Mechanical Turk // Ex-Position 43 (June 2020): 45–90.

вернуться

39

См., например: Nilsson N. The Quest for Artificial Intelligence: A History of Ideas and Achievements. Cambridge: Cambridge University Press, 2010.

вернуться

40

Пример корпоративной повестки см.: Домингос П. Верховный алгоритм: как машинное обучение изменит наш мир. М.: Манн, Иванов и Фербер, 2016.

вернуться

41

Об идее автономных технологий см. классический труд: Winner L. Autonomous Technology: Technics-Out-of-Control as a Theme in Political Thought. Cambridge, MA: MIT Press, 1977.

вернуться

42

О’Нил К. Убийственные большие данные: как математика превратилась в оружие массового поражения. М: АСТ, 2018; Noble S. U. Algorithms of Oppression: How Search Engines Reinforce Racism. New York: New York University Press, 2018; Benjamin R. Race after Technology: Abolitionist Tools for the New Jim Code. Cambridge: Polity, 2019; Wendy Hui Kyong Chun. Discriminating Data: Correlation, Neighborhoods, and the New Politics of Recognition. Cambridge, MA: MIT Press, 2021. Исследования в области ИИ в ходе развития сталкиваются с внутренними проблемами. Как отмечает Ярден Кац, порой «критически настроенные эксперты по ИИ используют свою позицию для укрепления белого господства с прогрессивным лицом… прибегая к языку, заимствованному у радикальных социальных движений» (см.: Katz Y. Artificial Whiteness. New York: Columbia University Press, 2020. P. 128).

вернуться

43

Систематический обзор критических исследований ИИ см.: University of Cambridge, Department of History and Philosophy of Science. Mellon Sawyer Seminar. Histories of AI: A Genealogy of Power. May 2020 – July 2021. URL: www.ai.hps.cam.ac.uk.

вернуться

44

См.: Hadden R. On the Shoulders of Merchants: Exchange and the Mathematical Conception of Nature in Early Modern Europe. Albany, NY: State University of New York Press, 1994. См. также: Erickson P. et al. How Reason Almost Lost Its Mind: The Strange Career of Cold War Rationality. Chicago: University of Chicago Press, 2013.

вернуться

45

О «военных априори» в истории вычислений см.: Winthrop-Young G. Drill and Distraction in the Yellow Submarine: On the Dominance of War in Friedrich Kittler’s Media Theory // Critical Inquiry 28, no. 4 (2002): 825–854.

вернуться

46

См.: Erickson P. et al. How Reason Almost Lost Its Mind: The Strange Career of Cold War Rationality. Chicago: University of Chicago Press, 2013.

вернуться

47

Agar J. The Government Machine: A Revolutionary History of the Computer. Cambridge, MA: MIT Press, 2003. См.: Wiggins Ch. and Jones M. L. How Data Happened: A History from the Age of Reason to the Age of Algorithms. New York: W. W. Norton, 2023.

вернуться

48

См.: Katz Y. Manufacturing an Artificial Intelligence Revolution // SSRN Electronic Journal (November 2017).

4
{"b":"905491","o":1}