3. Построение генератора.
4. Построение дискриминатора.
5. Построение и компиляция GAN.
6. Обучение GAN.
7. Генерация изображений.
Пример кода:
```python
import tensorflow as tf
from tensorflow.keras import layers, models
import numpy as np
import os
import matplotlib.pyplot as plt
from tensorflow.keras.preprocessing.image import ImageDataGenerator
# Шаг 1: Импорт библиотек
import tensorflow as tf
from tensorflow.keras import layers, models
import numpy as np
import matplotlib.pyplot as plt
import os
# Шаг 2: Подготовка данных
# Загрузка набора данных CelebA
# Этот пример предполагает, что данные находятся в папке 'img_align_celeba/img_align_celeba'
# Скачивание и подготовка данных не входит в код
DATA_DIR = 'img_align_celeba/img_align_celeba'
IMG_HEIGHT = 64
IMG_WIDTH = 64
BATCH_SIZE = 128
BUFFER_SIZE = 60000
def load_image(image_path):
image = tf.io.read_file(image_path)
image = tf.image.decode_jpeg(image, channels=3)
image = tf.image.resize(image, [IMG_HEIGHT, IMG_WIDTH])
image = (image – 127.5) / 127.5 # Нормализация изображений в диапазоне [-1, 1]
return image
def load_dataset(data_dir):
image_paths = [os.path.join(data_dir, img) for img in os.listdir(data_dir)]
image_dataset = tf.data.Dataset.from_tensor_slices(image_paths)
image_dataset = image_dataset.map(load_image, num_parallel_calls=tf.data.experimental.AUTOTUNE)
image_dataset = image_dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE).prefetch(tf.data.experimental.AUTOTUNE)
return image_dataset
train_dataset = load_dataset(DATA_DIR)
# Шаг 3: Построение генератора
def build_generator():
model = models.Sequential()
model.add(layers.Dense(8 * 8 * 256, use_bias=False, input_shape=(100,)))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Reshape((8, 8, 256)))
assert model.output_shape == (None, 8, 8, 256) # Убедитесь, что выходная форма такая
model.add(layers.Conv2DTranspose(128, (5, 5), strides=(2, 2), padding='same', use_bias=False))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
assert model.output_shape == (None, 16, 16, 128)
model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
assert model.output_shape == (None, 32, 32, 64)
model.add(layers.Conv2DTranspose(3, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))
assert model.output_shape == (None, 64, 64, 3)
return model
# Шаг 4: Построение дискриминатора
def build_discriminator():
model = models.Sequential()
model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=[64, 64, 3]))
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'))
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Conv2D(256, (5, 5), strides=(2, 2), padding='same'))
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Flatten())
model.add(layers.Dense(1, activation='sigmoid'))
return model
# Построение генератора и дискриминатора
generator = build_generator()
discriminator = build_discriminator()
# Определение функции потерь и оптимизаторов
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
def discriminator_loss(real_output, fake_output):
real_loss = cross_entropy(tf.ones_like(real_output), real_output)
fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
total_loss = real_loss + fake_loss
return total_loss
def generator_loss(fake_output):
return cross_entropy(tf.ones_like(fake_output), fake_output)
generator_optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)
# Шаг 5: Построение и компиляция GAN
@tf.function
def train_step(images):
noise = tf.random.normal([BATCH_SIZE, 100])
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
generated_images = generator(noise, training=True)
real_output = discriminator(images, training=True)
fake_output = discriminator(generated_images, training=True)
gen_loss = generator_loss(fake_output)
disc_loss = discriminator_loss(real_output, fake_output)
gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)
generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
def train(dataset, epochs):
for epoch in range(epochs):
for image_batch in dataset:
train_step(image_batch)
print(f'Эпоха {epoch + 1} завершена')
# Генерация изображений в конце каждой эпохи
if (epoch + 1) % 10 == 0:
noise = tf.random.normal([16, 100])
generate_and_save_images(generator, epoch + 1, noise)
# Шаг 6: Обучение GAN
EPOCHS = 100
train(train_dataset, EPOCHS)
# Шаг 7: Генерация изображений
def generate_and_save_images(model, epoch, test_input):
predictions = model(test_input, training=False)
fig = plt.figure(figsize=(4, 4))
for i in range(predictions.shape[0]):
plt.subplot(4, 4, i+1)
plt.imshow((predictions[i] * 127.5 + 127.5).numpy().astype(np.uint8))
plt.axis('off')
plt.savefig(f'image_at_epoch_{epoch:04d}.png')
plt.show()
# Генерация изображений после обучения
noise = tf.random.normal([16, 100])
generate_and_save_images(generator, EPOCHS, noise)
```
Пояснение:
1. Импорт библиотек: Импортируются необходимые библиотеки TensorFlow, Keras, numpy и matplotlib.
2. Подготовка данных: Загружаются и подготавливаются данные CelebA. Изображения нормализуются в диапазоне [-1, 1].
3. Построение генератора:
– Генератор создает изображения из случайного шума. Он включает плотные слои, batch normalization и Conv2DTranspose слои для генерации изображений размером 64x64 пикселей.
4. Построение дискриминатора:
– Дискриминатор оценивает, являются ли изображения реальными или сгенерированными. Он состоит из свёрточных слоев, слоев LeakyReLU и dropout для классификации изображений.
5. Построение и компиляция GAN:
– Генератор и дискриминатор объединяются в модель GAN. Определяются функции потерь и оптимизаторы для обеих моделей. Процедура `train_step` выполняет одну итерацию обучения GAN.
6. Обучение GAN:
– GAN обучается в течение заданного числа эпох. На каждом шаге обучения генератор пытается создать реалистичные изображения, а дискриминатор учится отличать реальные изображения от сгенерированных.
7. Генерация изображений:
– После обучения GAN, создаются и сохраняются изображения, сгенерированные генератором.
Этот пример демонстрирует, как создать сложную GAN для генерации реалистичных изображений лиц. Модель может быть улучшена за счет добавления дополнительных
9. Развертывание модели в продакшн
– Задача: Создание REST API для модели.
Развертывание модели машинного обучения в продакшн включает создание REST API, который позволяет клиентам взаимодействовать с моделью через HTTP запросы. В этом примере мы будем использовать Flask, популярный веб-фреймворк на Python, для создания REST API, который может обрабатывать запросы на предсказание с использованием обученной модели.