Литмир - Электронная Библиотека
Содержание  
A
A

14. Обнаружение аномалий в данных с помощью автоэнкодера

– Задача: Поиск аномалий в финансовых транзакциях.

Обнаружение аномалий в данных с использованием автоэнкодера – это мощный подход, особенно в задачах, где необходимо выявлять необычные или подозрительные образцы в данных, таких как финансовые транзакции. Автоэнкодеры используются для создания моделей, которые могут восстанавливать нормальные (обычные) образцы данных, и при этом выделять аномальные, не типичные образцы.

Построение автоэнкодера для обнаружения аномалий в финансовых транзакциях

1. Подготовка данных

Прежде всего необходимо подготовить данные:

– Загрузить и предобработать данные финансовых транзакций.

– Нормализовать данные для улучшения производительности обучения модели.

– Разделить данные на обучающую и тестовую выборки.

2. Построение модели автоэнкодера

Рассмотрим архитектуру автоэнкодера, который может быть использован для обнаружения аномалий в финансовых транзакциях:

– Энкодер: Преобразует входные данные в скрытое представление меньшей размерности.

– Декодер: Восстанавливает данные из скрытого представления обратно в оригинальные данные.

Пример архитектуры нейронной сети для автоэнкодера:

```python

import numpy as np

import tensorflow as tf

from tensorflow.keras.models import Model

from tensorflow.keras.layers import Input, Dense

# Пример архитектуры автоэнкодера для обнаружения аномалий в финансовых транзакциях

# Подготовка данных (вымышленный пример)

# X_train – обучающие данные, X_test – тестовые данные

# Данные предварительно должны быть нормализованы

input_dim = X_train.shape[1] # размер входных данных

# Энкодер

input_layer = Input(shape=(input_dim,))

encoded = Dense(32, activation='relu')(input_layer)

encoded = Dense(16, activation='relu')(encoded)

# Декодер

decoded = Dense(32, activation='relu')(encoded)

decoded = Dense(input_dim, activation='sigmoid')(decoded)

# Модель автоэнкодера

autoencoder = Model(input_layer, decoded)

# Компиляция модели

autoencoder.compile(optimizer='adam', loss='mse')

# Обучение модели на обычных (нормальных) образцах

autoencoder.fit(X_train, X_train,

epochs=50,

batch_size=128,

shuffle=True,

validation_data=(X_test, X_test))

# Использование автоэнкодера для предсказания на тестовых данных

predicted = autoencoder.predict(X_test)

# Рассчитываем ошибку реконструкции для каждого образца

mse = np.mean(np.power(X_test – predicted, 2), axis=1)

# Определение порога для обнаружения аномалий

threshold = np.percentile(mse, 95) # например, выбираем 95-й процентиль

# Обнаружение аномалий

anomalies = X_test[mse > threshold]

# Вывод аномалий или дальнейшее их анализ

print(f"Найдено {len(anomalies)} аномалий в данных.")

```

Пояснение архитектуры и процесса:

1. Архитектура автоэнкодера: Модель состоит из двух частей: энкодера и декодера. Энкодер уменьшает размерность данных, представляя их в скрытом пространстве меньшей размерности. Декодер восстанавливает данные обратно в оригинальную размерность.

2. Компиляция и обучение: Модель компилируется с использованием оптимизатора Adam и функции потерь MSE (Mean Squared Error), затем обучается на обычных (нормальных) образцах.

3. Определение порога для обнаружения аномалий: После обучения модели рассчитывается среднеквадратичная ошибка (MSE) между входными данными и их реконструкциями. Затем определяется порог, например, на основе перцентиля ошибок, для обнаружения аномальных образцов.

4. Обнаружение аномалий: Образцы, для которых ошибка восстановления выше заданного порога, считаются аномальными.

Преимущества использования автоэнкодеров для обнаружения аномалий

– Не требуется разметка данных: Автоэнкодеры могут обучаться без размеченных данных, что упрощает процесс обнаружения аномалий.

– Универсальность: Могут использоваться для различных типов данных, включая структурированные данные, изображения и текст.

– Высокая чувствительность к аномалиям: Автоэнкодеры могут выявлять сложные и неочевидные аномалии, которые могут быть пропущены другими методами.

Этот подход к обнаружению аномалий является эффективным инструментом для финансовых институтов и других отраслей, где важно быстро выявлять подозрительные или необычные события в данных.

15. Прогнозирование погоды с использованием LSTM сети

– Задача: Анализ временных рядов метеорологических данных.

Прогнозирование погоды с использованием LSTM (Long Short-Term Memory) сети – это задача анализа временных рядов, которая требует учета зависимостей в данных со временем, таких как температура, влажность, давление и другие метеорологические параметры. LSTM, как тип рекуррентной нейронной сети, хорошо подходит для работы с последовательными данных, сохраняя информацию на длительные временные интервалы.

Построение LSTM сети для прогнозирования погоды

1. Подготовка данных

Прежде всего необходимо подготовить данные:

– Загрузить и предобработать временные ряды метеорологических данных.

– Разделить данные на обучающую и тестовую выборки.

– Масштабировать данные для улучшения производительности обучения модели.

2. Построение модели LSTM

Рассмотрим архитектуру LSTM сети для прогнозирования погоды:

– LSTM слои: Используются для запоминания и учета долгосрочных зависимостей в данных о погоде.

Пример архитектуры нейронной сети для прогнозирования погоды:

```python

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.preprocessing import MinMaxScaler

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import LSTM, Dense, Dropout

# Пример построения LSTM модели для прогнозирования погоды

# Подготовка данных (вымышленный пример)

# Загрузка и предобработка данных

# Пример данных (вымышленный)

# Здесь данные должны быть загружены из вашего источника данных

# Давайте представим, что у нас есть временной ряд температур

data = pd.DataFrame({'date': pd.date_range('2022-01-01', periods=365),

'temperature': np.random.randn(365) * 10 + 20})

# Масштабирование данных

scaler = MinMaxScaler(feature_range=(0, 1))

scaled_data = scaler.fit_transform(data['temperature'].values.reshape(-1, 1))

# Формирование датасета для LSTM

def create_dataset(data, look_back=1):

X, Y = [], []

for i in range(len(data) – look_back – 1):

X.append(data[i:(i + look_back), 0])

Y.append(data[i + look_back, 0])

return np.array(X), np.array(Y)

# Разделение данных на обучающую и тестовую выборки

train_size = int(len(scaled_data) * 0.8)

test_size = len(scaled_data) – train_size

train, test = scaled_data[0:train_size], scaled_data[train_size:len(scaled_data)]

# Создание dataset с look_back временными шагами

look_back = 10 # количество предыдущих временных шагов для использования в качестве признаков

X_train, Y_train = create_dataset(train, look_back)

X_test, Y_test = create_dataset(test, look_back)

# Изменение формы данных для LSTM [samples, time steps, features]

X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))

X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))

# Построение LSTM модели

model = Sequential()

model.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], 1)))

model.add(Dropout(0.2))

model.add(LSTM(units=50))

model.add(Dropout(0.2))

model.add(Dense(units=1))

# Компиляция модели

11
{"b":"902364","o":1}