Литмир - Электронная Библиотека
Содержание  
A
A

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(64, (3, 3), activation='relu'))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(64, (3, 3), activation='relu'))

model.add(layers.Flatten())

model.add(layers.Dense(64, activation='relu'))

model.add(layers.Dense(10, activation='softmax'))

# Компиляция модели

model.compile(optimizer='adam',

loss='sparse_categorical_crossentropy',

metrics=['accuracy'])

# Обучение модели

history = model.fit(train_images, train_labels, epochs=10,

validation_data=(test_images, test_labels))

# Оценка модели

test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)

print(f"Точность на тестовых данных: {test_acc}")

# Визуализация точности и потерь во время обучения

plt.plot(history.history['accuracy'], label='accuracy')

plt.plot(history.history['val_accuracy'], label = 'val_accuracy')

plt.xlabel('Epoch')

plt.ylabel('Accuracy')

plt.ylim([0, 1])

plt.legend(loc='lower right')

plt.show()

```

Этот код создает простую свёрточную нейронную сеть для классификации изображений из набора данных CIFAR-10. Вы можете изменить архитектуру модели, параметры обучения и другие аспекты для улучшения производительности.

Простая свёрточная нейронная сеть (CNN) для распознавания изображений из набора CIFAR-10 состоит из нескольких ключевых компонентов:

1. Свёрточные слои (Convolutional Layers):

– Цель: Используются для извлечения признаков из входных изображений. Каждый свёрточный слой применяет набор фильтров (или ядер), которые скользят по входным данным и создают карты признаков, выделяя важные аспекты изображения, такие как края, текстуры и формы.

– Особенности: Фильтры в свёрточных слоях обучаются в процессе обучения сети, чтобы оптимально отвечать на определённые признаки.

2. Пулинговые слои (Pooling Layers):

– Цель: Уменьшают пространственные размерности карт признаков, удаляя избыточную информацию и улучшая вычислительную эффективность.

– Особенности: Наиболее распространены MaxPooling, который выбирает максимальное значение из каждой области, и AveragePooling, который вычисляет среднее значение.

3. Полносвязные слои (Fully Connected Layers):

– Цель: Используются для классификации извлечённых признаков. Каждый нейрон полносвязного слоя связан со всеми нейронами предыдущего слоя, что позволяет модели делать выводы на основе объединённых признаков.

– Особенности: Полносвязные слои обычно располагаются в конце сети после свёрточных и пулинговых слоёв.

4. Функции активации:

– Цель: Введение нелинейности в модель. Применяются после каждого свёрточного и полносвязного слоя для того, чтобы модель могла учиться сложным зависимостям в данных.

– Особенности: Распространённые функции активации включают ReLU (Rectified Linear Unit), которая преобразует отрицательные значения в ноль, и softmax для последнего слоя, который представляет вероятности принадлежности к различным классам.

5. Компиляция и обучение модели:

– Цель: Определение параметров обучения, таких как оптимизаторы, функции потерь и метрики для оценки производительности модели.

– Особенности: Оптимизаторы, такие как Adam или SGD, используются для минимизации функции потерь, а метрики, такие как точность, используются для измерения эффективности модели на тестовых данных.

Свёрточные нейронные сети являются основой для решения задач компьютерного зрения, обеспечивая эффективное извлечение и классификацию признаков из изображений. Эффективность этих сетей подтверждается их успешным применением в широком спектре приложений, от распознавания объектов до автоматического описание изображений.

4. Построение более сложной CNN с использованием нескольких слоев

– Задача: Углубленная классификация изображений.

Для углубленной классификации изображений с использованием более сложной сверточной нейронной сети (CNN) важно использовать несколько слоев, включая сверточные слои, слои подвыборки (pooling), а также полносвязные слои. Рассмотрим пример такой сети на языке Python с использованием библиотеки TensorFlow и Keras.

Шаги:

1. Импорт библиотек и модулей.

2. Подготовка данных.

3. Построение модели CNN.

4. Компиляция и обучение модели.

5. Оценка и тестирование модели.

Пример кода:

```python

import tensorflow as tf

from tensorflow.keras import datasets, layers, models

import matplotlib.pyplot as plt

# Шаг 1: Импорт библиотек

import tensorflow as tf

from tensorflow.keras import datasets, layers, models

# Шаг 2: Подготовка данных

# Загрузка и нормализация данных CIFAR-10

(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()

train_images, test_images = train_images / 255.0, test_images / 255.0

# Шаг 3: Построение модели

model = models.Sequential()

# Первый сверточный слой

model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(64, (3, 3), activation='relu'))

model.add(layers.MaxPooling2D((2, 2)))

model.add(layers.Conv2D(64, (3, 3), activation='relu'))

# Добавление полносвязных слоев

model.add(layers.Flatten())

model.add(layers.Dense(64, activation='relu'))

model.add(layers.Dense(10))

# Шаг 4: Компиляция и обучение модели

model.compile(optimizer='adam',

loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),

metrics=['accuracy'])

history = model.fit(train_images, train_labels, epochs=10,

validation_data=(test_images, test_labels))

# Шаг 5: Оценка модели

test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)

print(f'\nТочность на тестовых данных: {test_acc}')

# Визуализация процесса обучения

plt.plot(history.history['accuracy'], label='Точность на обучающем наборе')

plt.plot(history.history['val_accuracy'], label='Точность на валидационном наборе')

plt.xlabel('Эпоха')

plt.ylabel('Точность')

plt.legend(loc='lower right')

plt.show()

```

Пояснение:

1. Импорт библиотек: Загружаются необходимые библиотеки TensorFlow и Keras для построения и обучения модели.

2. Подготовка данных: Загрузка набора данных CIFAR-10, который содержит 60,000 цветных изображений размером 32x32, разделенных на 10 классов. Данные нормализуются, чтобы ускорить обучение.

3. Построение модели: Модель создается как последовательная (Sequential). Добавляются несколько сверточных слоев, за которыми следуют слои подвыборки (Pooling) и полносвязные слои.

4. Компиляция и обучение: Модель компилируется с использованием оптимизатора Adam и функции потерь Sparse Categorical Crossentropy. Затем модель обучается на тренировочных данных.

5. Оценка и тестирование: После обучения модель оценивается на тестовых данных, и визуализируется точность на тренировочном и валидационном наборах данных.

Эта структура сети может быть расширена и усложнена в зависимости от задачи и доступных данных.

Построение модели

Создание последовательной модели (Sequential)

Для создания сложной сверточной нейронной сети (CNN) мы будем использовать последовательную модель `Sequential` из библиотеки Keras. Этот тип модели позволяет добавлять слои один за другим, что упрощает процесс построения и настройки сети.

Добавление сверточных слоев

Сверточные слои (Conv2D) являются основным элементом CNN. Они применяют фильтры к входному изображению, чтобы выделить различные признаки, такие как края, текстуры и другие важные детали. В нашем примере мы добавляем три сверточных слоя:

1. Первый сверточный слой:

3
{"b":"902364","o":1}