Литмир - Электронная Библиотека
Содержание  
A
A

Первый слой LSTM

Первый слой LSTM принимает последовательность данных на вход и возвращает последовательность, которая будет передана следующему слою. Возвращение последовательности (return_sequences=True) необходимо, чтобы каждый временной шаг предыдущего слоя был передан на вход следующего слоя LSTM. Это позволяет следующему слою LSTM дополнительно обрабатывать временные зависимости.

```python

model.add(layers.LSTM(50, return_sequences=True, input_shape=(sequence_length, 1)))

```

– 50 нейронов: Это количество нейронов в первом слое LSTM. Число нейронов определяет способность сети к обучению сложным паттернам.

–return_sequences=True: Указывает, что слой должен возвращать полную последовательность выходов для каждого временного шага, а не только последний выход.

– input_shape=(sequence_length, 1): Определяет форму входных данных, где `sequence_length` – это длина последовательности (например, 60 дней), а `1` – это количество признаков (в данном случае, только одно значение цены закрытия).

Второй слой LSTM

Второй слой LSTM принимает последовательность от первого слоя и возвращает конечный выход для всей последовательности. Здесь параметр `return_sequences` установлен в `False`, что означает, что слой будет возвращать только последний выходной элемент последовательности.

```python

model.add(layers.LSTM(50, return_sequences=False))

```

– 50 нейронов: Количество нейронов в втором слое LSTM, аналогично первому слою.

– return_sequences=False: Указывает, что слой должен возвращать только последний выход, который будет использоваться для прогнозирования.

Полносвязные слои

После обработки данных слоями LSTM, выходной вектор передается полносвязным слоям для окончательной классификации или регрессии. Полносвязные слои обеспечивают соединение каждого нейрона предыдущего слоя с каждым нейроном текущего слоя, что позволяет сети обучаться сложным нелинейным зависимостям.

```python

model.add(layers.Dense(25))

model.add(layers.Dense(1))

```

– Первый полносвязный слой:

– 25 нейронов: Полносвязный слой с 25 нейронами. Этот слой может использоваться для дополнительного обучения сложным паттернам в данных.

– Выходной слой:

– 1 нейрон: Выходной слой с одним нейроном, который будет выдавать прогнозируемую цену акции.

Эта архитектура сети, состоящая из двух слоев LSTM и двух полносвязных слоев, позволяет модели эффективно обрабатывать временные ряды и делать прогнозы на основе предыдущих данных. Первый слой LSTM возвращает полную последовательность, позволяя следующему слою LSTM дополнительно обучаться на временных зависимостях. Второй слой LSTM возвращает конечный выход, который затем передается через полносвязные слои для получения окончательного прогноза. Такая архитектура позволяет модели обучаться на длинных временных зависимостях и выдавать точные прогнозы цен на акции.

6. Создание LSTM сети для обработки текстовых данных

– Задача: Анализ настроений в текстах.

Для анализа настроений в текстах с использованием LSTM сети можно использовать библиотеку TensorFlow и её высокоуровневый интерфейс Keras. В этом примере мы рассмотрим, как создать и обучить модель LSTM для анализа настроений на основе текстовых данных.

Шаги:

1. Импорт библиотек и модулей.

2. Подготовка данных.

3. Построение модели LSTM.

4. Компиляция и обучение модели.

5. Оценка и тестирование модели.

Пример кода:

```python

import numpy as np

import pandas as pd

import tensorflow as tf

from tensorflow.keras import layers, models

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.sequence import pad_sequences

from sklearn.model_selection import train_test_split

import matplotlib.pyplot as plt

# Шаг 1: Импорт библиотек

import tensorflow as tf

from tensorflow.keras import layers, models

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.sequence import pad_sequences

from sklearn.model_selection import train_test_split

# Шаг 2: Подготовка данных

# Загрузка данных. Предположим, что у нас есть CSV файл с текстами и метками настроений (0 – негативное, 1 – позитивное).

data = pd.read_csv('sentiment_data.csv')

# Пример структуры данных:

# text sentiment

# 0 This movie was great! 1

# 1 I did not like this movie. 0

# …

# Тексты и метки

texts = data['text'].values

labels = data['sentiment'].values

# Токенизация текстов

tokenizer = Tokenizer(num_words=10000) # Используем только 10,000 наиболее частотных слов

tokenizer.fit_on_texts(texts)

sequences = tokenizer.texts_to_sequences(texts)

# Ограничение длины последовательностей (padding)

maxlen = 100 # Максимальная длина последовательности

X = pad_sequences(sequences, maxlen=maxlen)

# Разделение данных на обучающую и тестовую выборки

X_train, X_test, y_train, y_test = train_test_split(X, labels, test_size=0.2, random_state=42)

# Шаг 3: Построение модели LSTM

model = models.Sequential()

model.add(layers.Embedding(input_dim=10000, output_dim=128, input_length=maxlen))

model.add(layers.LSTM(128, return_sequences=True))

model.add(layers.LSTM(128, return_sequences=False))

model.add(layers.Dense(1, activation='sigmoid'))

# Шаг 4: Компиляция и обучение модели

model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])

history = model.fit(X_train, y_train, epochs=10, batch_size=32,

validation_data=(X_test, y_test))

# Шаг 5: Оценка модели

loss, accuracy = model.evaluate(X_test, y_test, verbose=2)

print(f'\nТочность на тестовых данных: {accuracy}')

# Визуализация процесса обучения

plt.plot(history.history['accuracy'], label='Точность на обучающем наборе')

plt.plot(history.history['val_accuracy'], label='Точность на валидационном наборе')

plt.xlabel('Эпоха')

plt.ylabel('Точность')

plt.legend(loc='lower right')

plt.show()

```

Пояснение:

1. Импорт библиотек: Импортируются необходимые библиотеки TensorFlow, Keras, pandas, matplotlib и другие.

2. Подготовка данных: Загрузка данных из CSV файла, содержащего тексты и метки настроений. Тексты токенизируются с использованием `Tokenizer`, и последовательности приводятся к одинаковой длине с помощью `pad_sequences`.

3. Построение модели LSTM: Модель строится с использованием слоя `Embedding` для преобразования токенов в плотные векторы, двух слоев LSTM для обработки последовательностей и одного полносвязного слоя для выдачи прогноза.

– Слой Embedding:

```python

model.add(layers.Embedding(input_dim=10000, output_dim=128, input_length=maxlen))

```

Этот слой преобразует входные токены в плотные векторы размерности 128.

– Первый слой LSTM:

```python

model.add(layers.LSTM(128, return_sequences=True))

```

Первый слой LSTM возвращает полную последовательность выходов, которая передается следующему слою LSTM.

– Второй слой LSTM:

```python

model.add(layers.LSTM(128, return_sequences=False))

```

Второй слой LSTM возвращает только последний выходной элемент.

– Выходной слой:

```python

model.add(layers.Dense(1, activation='sigmoid'))

```

Выходной слой с сигмоидной активацией для бинарной классификации настроений (позитивное или негативное).

4. Компиляция и обучение модели: Модель компилируется с использованием оптимизатора Adam и функции потерь binary_crossentropy. Затем модель обучается на обучающей выборке.

5. Оценка и тестирование модели: Оценивается точность модели на тестовой выборке и визуализируется процесс обучения с помощью графика.

5
{"b":"902364","o":1}