О Линн Маргулис мы уже упоминали в двадцать второй главе как о примере ученого, который произвел на свет океаны сомнительных идей, но попал на золотые скрижали истории науки за те несколько крупных жемчужин, которые нашлись в этих океанах. По Маргулис, вся история жизни – это не борьба за существование, а взаимопомощь и объединение сил: мягкий женский взгляд на мир был противопоставлен жестокой мужской биологической догме. История жизни – это просто история симбиозов. Некоторые единомышленники Линн договорились до того, что предки гусениц и бабочек когда-то были отдельными организмами, объединившимися в странный союз под лозунгом «Жить по очереди». Но все это осталось в категории курьезов, а Маргулис вошла в историю как фактический первооткрыватель «великого симбиоза» – соединения двух микробов, бактерии и археи, в одну клетку, от которой и произошли все эукариоты, то есть «ядерные организмы».
Археи – такая же ветка эволюционного древа жизни, как и бактерии, однако для архей чуть более типично пользоваться не слишком продвинутой биохимией. Такие вершины прогресса, как хлорофильный фотосинтез или кислородное дыхание, остались им недоступны. И когда на планете – благодаря освоившим фотосинтез бактериям – появился кислород, одной симпатичной архее показалось уместным отдать часть своей биохимии на аутсорс. Благо бактерии, способные использовать кислород для получения энергии, жили тут же, в том же бактериальном мате[13]. Дальнейшее сокрыто тайной: бактерия то ли была проглочена археей, то ли заразила ее в качестве паразита. Но союз оказался взаимовыгодным. Бактерия стала эндосимбионтом (то есть «сожителем, живущим внутри»), и началась история сложных эукариотических организмов, из которых возникли все многоклеточные.
Об истории «великого симбиоза» написано множество книг, а начать, наверное, лучше с четвертой главы книги Ника Лейна «Лестница жизни», не зря же он получил за эту книгу престижную премию. Потом, конечно, можно прочесть «Рождение сложности» Александра Маркова и, наконец, Евгения Кунина, «Логику случая». А мы перепрыгнем сразу к финалу: клетки всех сложных, в том числе многоклеточных, организмов на планете – это потомки микробов, внутри которых живут другие микробы. Эти вторые микробы называются митохондриями. Есть еще и третьи микробы – хлоропласты, живущие в клетках растений, а может, и четвертые, но это уж точно за рамками нашей истории.
Митохондрии почти 2 млрд лет не видели воли, однако по-прежнему живут жизнью бактерий: у них есть маленький геномчик, и они размножаются делением. Естественно, у них происходит нечто вроде эволюции – накапливаются мутации, причем вредные удаляются отбором. Никакого секса у них, разумеется, нет. Зато секс есть у больших клеток, внутри которых они живут. Когда две такие клетки сливаются в зиготу, каждая из них несет в себе сколько-то митохондрий. Например, с десяток может быть в спермии и этак с сотню тысяч – в яйцеклетке. У тех, что в спермии, естественно, нет шансов в конкуренции: ребенок почти наверняка получит свой пул митохондрий от мамы. На этом основан метод отслеживания родословной по материнской линии – все наверняка слышали о «митохондриальной Еве».
В одиннадцатой главе упоминалось, что передача потомству митохондрий – это такой признак, который можно даже использовать для определения самок. Самка – тот из партнеров, который передает митохондрии. Может, в этом и нет ничего фундаментального: митохондрии прекрасно помещаются и в спермий. Кстати, в огромном шестисантиметровом хвосте сперматозоида Drosophila bifurca как раз и располагаются две здоровенные митохондрии. Видимо, они нужны, чтобы обеспечить энергией движение этих гигантов, однако их судьба плачевна: вместе с самим хвостом останки этих митохондрий личинка извергает из заднего прохода, и их геном пропадает зря. А вот некоторые растения передают своих эндосимбионтов как раз по мужской линии. И тем не менее просматривается правило: в подавляющем большинстве случаев потомок получает митохондрии и хлоропласты только от одного из родителей.
Так часто происходит даже у организмов, у которых половые клетки не делятся явным образом на мужские и женские (в этом случае их называют изогаметы). У водоросли по имени «морской салат» однородительское наследование митохондрий достигается самым прямолинейным способом: после слияния изогамет органеллы одного из родителей набрасываются на органеллы другого и буквально рубят их в клочья. А вот у слизевика физарума многоглавого, героя одного из предыдущих разделов, порядок передачи митохондрий задан генетически. Среди дюжины аллелей локуса типа спаривания существует строгая иерархия: при слиянии клеток органеллы передаются только от «старшего по званию». У нас с вами, кстати, женские митохондрии побеждают мужские тоже не только числом: немногочисленные митохондрии из спермиев при попадании в яйцеклетку не просто теряются в толпе, а проходят особую процедуру мечения, по результатам которой бдительный клеточный механизм почти всегда отправляет их на принудительную утилизацию.
Митохондрии, как мы сказали, – бывшие клетки, и то, что при встрече разные их расы устраивают драку и вытесняют друг друга, – вполне банальный дарвиновский феномен. Но в какой-то момент биологам показалось, что это не только личное дело митохондрий, но напрямую касается и большой клетки-хозяина. В начале 1980-х годов эту идею оформили Джон Туби и Леда Космидес. Туби и Космидес – весьма примечательная супружеская пара. Он – эволюционный антрополог, она – психолог, однако это не помешало им внести заметный вклад в достаточно далекую область науки, притом что все остальные их статьи относятся к загадочной дисциплине под названием «эволюционная психология». Их гипотеза такова: смысл однородительского наследования митохондрий в том и состоит, чтобы не дать органеллам устроить внутри вашей клетки отвратительную свару. Потому что они же при этом ничуть не будут беспокоиться о важном таинстве клеточного дыхания – им наплевать, кто из них справляется с этим лучше. Выживут те, кто быстрее делится. И если пустить на самотек такой естественный отбор, он приведет к триумфу таких митохондрий, которые замечательно умеют делиться, а вот свою главную функцию наверняка будут выполнять кое-как.
Теперь, когда это сформулировано, до финиша остается два шага. Первый шаг: заявить, что первичный смысл существования двух полов в том и состоит, чтобы предотвратить смешение двух рас митохондрий в одной клетке. Именно отсюда, согласно авторам, берется то давление отбора, которое подталкивает половые клетки к дифференциации по размеру и, следовательно, манере поведения. И второй шаг: найти этому убедительные обоснования.
Первый шаг был сделан, второй, увы, нет. Наоборот: наружу вылезла череда фактов, плохо вписывающихся в «митохондриальную» гипотезу происхождения двуполости. Вот, например, один из них: гетероплазмия, то есть смешение разных типов митохондрий, время от времени действительно случается у разных организмов (включая даже людей) и вроде бы не приводит ни к каким серьезным последствиям.
С другой стороны, у митохондрий не так уж много возможностей для борьбы друг с другом. Как и нормальные вольные бактериальные клетки, эти органеллы используют для жизни около полутора тысяч разных белков, но в самой нашей митохондрии есть всего полтора десятка белок-кодирующих генов. Причем эти гены кодируют именно ключевые белки дыхательных цепей. Все то, что необходимо митохондрии для повседневного житья-бытья и деления, кодируется генами, расположенными в ядре клетки-хозяина. В этой ситуации единственный способ, которым митохондрия может получить преимущество в размножении, – это потерять еще какую-то часть своей хромосомы в надежде, что клетка-хозяин о ней позаботится. Но этот процесс – потеря митохондриальных генов и их перенос в хозяйское ядро – и так проходил все миллиарды лет эволюции сложных клеток, и, видимо, таким фокусом уже никого не удивишь. А если митохондрия теряет что-то лишнее и становится бесполезной, у клетки есть проверенные механизмы, позволяющие избавиться от такого балласта.