Литмир - Электронная Библиотека
A
A
Математические игры с дурацкими рисунками: 75¼ простых, но требующих сообразительности игр, в которые можно играть где угодно - i_046.jpg

Этот вопрос тревожит инженеров, сопоставляющих электрические схемы, компьютерщиков, кодирующих визуальную информацию, и химиков, ищущих соединения в базах данных. По сути дела, все эти серьезные люди играют в свои версии «Ростков».

Топология красива. Для многих знакомство с топологией начинается с ленты Мёбиуса. Возьмите полоску бумаги, перекрутите ее и склейте концы.

У ленты Мёбиуса всего одна поверхность: нет дихотомии «внутри» и «снаружи». Если вы решите использовать ее в качестве браслета и попытаетесь покрасить внутреннюю сторону в синий, а внешнюю в красный, ничего не получится. И это лишь одна из странностей. Что будет, если разрезать ленту Мёбиуса вдоль? А если попытаться разрезать ее на три части?

Математические игры с дурацкими рисунками: 75¼ простых, но требующих сообразительности игр, в которые можно играть где угодно - i_047.jpg

Математик Дэвид Ричесон в книге «Жемчужина Эйлера» подсчитал, сколько медалей Филдса (самая престижная награда в области математики) досталось топологам. «Из 48 лауреатов, – пишет он, – примерно треть были награждены за работы в области топологии, и еще больше – за вклад в тесно связанные с ней области».

Если красота – дочь сложности и простоты, то «Ростки» – настоящее дитя любви.

ВАРИАЦИИ И РОДСТВЕННЫЕ ИГРЫ

Сорняки. Автор – Владимир Игнатович. Игроки могут рисовать на своей линии одну точку, две или ни одной.

Набери очки. Автор – Уолтер Джорис. Правила те же, что в «Ростках», но ведется подсчет очков. Если в результате вашего хода образуется замкнутая область, пометьте ее инициалами или цветом и подсчитайте количество точек на границе области (одна точка – одно очко). Рисовать новые линии внутри этой области запрещено. Когда все ходы будут исчерпаны, побеждает тот, у кого больше очков[13].

Математические игры с дурацкими рисунками: 75¼ простых, но требующих сообразительности игр, в которые можно играть где угодно - i_048.jpg

Брюссельская капуста. Эта скверная сестра-близнец «Ростков» на первый взгляд кажется такой же многовариантной и требующей стратегического мышления. Но это не так. Скорее это не игра, а какая-то пародия.

Вначале нарисуйте несколько крестиков. Соединяйте любые два свободных конца и ставьте черточку на новой линии, чтобы получилось еще два свободных конца. Линии не должны пересекаться. Выигрывает тот, кто делает последний ход, когда больше ходов не осталось.

Математические игры с дурацкими рисунками: 75¼ простых, но требующих сообразительности игр, в которые можно играть где угодно - i_049.jpg

Почему пародия? Дело в том, что исход игры предрешен независимо от действий игроков. Если в начале было нечетное число крестиков, выигрывает первый игрок; если четное – второй. Можете выстраивать какие угодно хитроумные стратегические схемы, всем им грош цена. С тем же успехом можно воображать себя гонщиком «Формулы-1», вращая руль игрушечного автомобиля.

Как это получается? Обратите внимание на то, что количество свободных концов не меняется. Каждый ход уменьшает их на два, а новая черточка добавляет два. Меняется лишь количество областей. После каждого хода, за малым исключением, появляется новая область. В игре с n крестиками на n – 1 ходу нельзя создать ни одну область, соединяя несвязанные крестики.

Математические игры с дурацкими рисунками: 75¼ простых, но требующих сообразительности игр, в которые можно играть где угодно - i_050.jpg

Игра заканчивается, когда количество областей становится равно количеству свободных концов. Для этого требуется 4n – 1 ходов, создающих новые области, плюс n – 1 ход, не увеличивающий количество областей, то есть всего 5n – 2 хода.

Математические игры с дурацкими рисунками: 75¼ простых, но требующих сообразительности игр, в которые можно играть где угодно - i_051.jpg

Разыграйте приятеля: предложите сыграть на поле с двумя, четырьмя и шестью крестиками, каждый раз великодушно уступая право первого хода. Когда противник почует подвох и потребует, чтобы вы ходили первым, незаметно переключитесь на игру с тремя или пятью крестиками. Конечно, обманывать нехорошо, особенно друзей… Но пошутить-то можно.

Супер-крестики-нолики

ИГРА С ФРАКТАЛЬНОЙ СТРУКТУРОЙ

В 2013 году, узнав о существовании этой игры на пикнике математиков с нашего факультета, я написал краткий пост в своем блоге. Он вызвал настоящий ажиотаж в интернете, угодив в топ сайта Hacker News[14] и на главную страницу Reddit[15], а кроме того, породил целый букет приложений для смартфонов[16]. Поскольку взлет моей карьеры в немалой мере связан с этой игрой, я много размышлял о том, что делает ее особенной. Элегантность правил? Легкость измышления стратегических идей? Подсознательная ассоциация с «Суперфрисби»?

Но лишь спустя годы меня осенило – это фракталы. Странно, что я не додумался до этого раньше.

Математические игры с дурацкими рисунками: 75¼ простых, но требующих сообразительности игр, в которые можно играть где угодно - i_052.jpg

Мы живем среди фракталов, они всюду: от облаков до береговых линий и ветвей деревьев. Возможно, именно поэтому «Супер-крестики-нолики» кажутся такими естественными. Обычные крестики-нолики всегда стремились эволюционировать в этом направлении.

КАК ИГРАТЬ

Сколько игроков? Двое.

Что потребуется? Карандаши и бумага. Нарисуйте крупно поле для крестиков-ноликов, а затем по одному мини-полю внутри каждого квадрата.

В чем цель? Выиграть на трех мини-полях, выстроенных в одну линию.

Какие правила?

1. По очереди ставьте крестик или нолик в маленьких квадратах. Первый ход можно сделать где угодно; после этого мини-поле, на котором вы будете играть, определяется предыдущим ходом противника. В зависимости от клеточки, которую он выбрал, вы должны сделать ход на определенном мини-поле.

Математические игры с дурацкими рисунками: 75¼ простых, но требующих сообразительности игр, в которые можно играть где угодно - i_053.jpg

2. Поставив три крестика или нолика на одной прямой на мини-поле, вы выигрываете там. Это мини-поле замораживается, а игрок, которому выпадает ход на нем, выбирает любое другое.

Математические игры с дурацкими рисунками: 75¼ простых, но требующих сообразительности игр, в которые можно играть где угодно - i_054.jpg

3. Побеждает тот, кто выиграет на трех мини-полях на одной линии.

Математические игры с дурацкими рисунками: 75¼ простых, но требующих сообразительности игр, в которые можно играть где угодно - i_055.jpg

Альтернативные условия победы перечислены в разделе «Вариации и родственные игры».

ЗАМЕТКИ ДЕГУСТАТОРА

Однажды майским днем 2018 года я заглянул на сайт политических новостей FiveThirtyEight и с удивлением прочел: «Трамп играет не в трехмерные шахматы, а в "Супер-крестики-нолики"», – гласил заголовок статьи Олли Рейдера.

Математические игры с дурацкими рисунками: 75¼ простых, но требующих сообразительности игр, в которые можно играть где угодно - i_056.jpg

В те годы многие из нас пытались понять действия президента Трампа. Он ввязывался то в одну, то в другую политическую авантюру, непредсказуемо меняя повестку дня. Что это было: продуманный план или просто импульсивность? «Он не игрок в трехмерные шахматы», – часто язвили критики.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «Литрес».

вернуться

13

Необходимо еще одно правило: запрещено создавать область со свободно плавающей фигурой внутри, даже если это всего лишь одна точка.

вернуться

14

Если вдруг не слышали про Hacker News, то знайте – он крутой.

вернуться

15

Если вдруг не слышали про Reddit, то знайте – он тоже крутой.

вернуться

16

А вот приложения для смартфонов не так круты.

7
{"b":"870838","o":1}