4. Описание всех игр имеет одинаковую структуру. Во-первых, в разделе «Как играть» я рассказываю суть: количество игроков, необходимый реквизит, цель и правила.
Во-вторых, в разделе «Заметки дегустатора» я подробно описываю вкусовую гамму игрового процесса, неуловимое je ne sais quoi[2]. Возможно, вы узнаете пару стратегических хитростей, но это не главное. Я стараюсь показать тонкие оттенки и нюансы математической игры, которые настолько изысканны, что вино по сравнению с ними похоже на прокисший виноградный сок[3].
В-третьих, в разделе «Генеалогия игры» я излагаю то, что знаю о происхождении игр. Какие-то из них уходят корнями в глубину веков и неподвластны времени, другие – дурацкие и новомодные, а есть и ни то ни сё (не спрашивайте, как такое может быть, просто примите как данность).
В-четвертых, в разделе «Почему эта игра важна?» я рассказываю, почему игра выявляет лучшее в человеческом мышлении. Возможно, она воспроизводит квантовую структуру материи. Возможно, обнажает строгую красоту топологии или циничную логику предвыборных махинаций. Возможно, пробуждает вашего внутреннего гения или, того лучше, шимпанзе. Так или иначе, на мой взгляд, это суть главы и главная цель всей книги.
Наконец, в разделе «Вариации и родственные игры» я показываю заманчивые ответвления, которые вы можете исследовать. Иногда это незначительные видоизменения правил, иногда – совершенно новые игры, связанные с оригиналом исторически, концептуально или по духу.
5. Под занавес приведены сводные таблицы, обобщающие игры и общедоступная библиография, изложенная в форме ответов на часто задаваемые вопросы.
Да, и еще там я объясняю, откуда же взялось странное число 751/4. Если вас мучает вопрос «Что такое четверть игры?», то не сомневайтесь, все не так просто.
ЗАМЕТКИ ДЕГУСТАТОРА ОБ ЭТОЙ КНИГЕ
Вы вольны читать эту книгу как любую другую. Переворачивайте страницы. Вежливо улыбайтесь шуткам. Мурлычьте под нос: «Вау, ничего себе рисунки. Я не прогадал, что раскошелился». Двигаясь от главы к главе, от начала к концу, от игры к игре, вы прекрасно проведете время.
Но лишитесь настоящего удовольствия.
Эта книга предназначена для того, чтобы с ней играли. Человек, играющий с математикой, похож на слона, получающего удовольствие от своего хобота, птицу, получающую удовольствие от своих крыльев, или Бэтмена, который получает удовольствие от своего навороченного автомобиля. Ради этого они и родились. Ваша способность к математическому мышлению – дар такого масштаба, что ему нет аналогов в животном мире (его превосходит разве что кошачье искусство презрения). Пожалуйста, не оставляйте этот подарок эволюции нераспакованным. Достаньте его. Поиграйте с ним. Или по крайней мере уподобьтесь кошке и поиграйте с оберточной бумагой.
Большинство игр предназначено для нескольких игроков. Надеюсь, вы найдете компаньона, который разделит ваше любопытство и попробует вместе с вами освоить их. «Там, где царит соперничество, можно преподавать лишь мертвую математику, – сказала математик Мэри Эверест Буль. – Живая математика должна быть общим достоянием». На мой взгляд, даже состязательные игры – это совместные проекты, в которых умы объединяются, чтобы выстраивать необычные логические и стратегические цепочки. Давид Бронштейн называл это «мышлением на двоих». Карл Меннингер – «прогрессивной диффузией умов». Я предпочитаю говорить проще: «игра».
Как бы то ни было, это книга, и я очень надеюсь, что вы ее прочтете. Каждая игра высвечивает ту или иную истину о математике, от комбинаторного взрыва до теории информации. А эти математические истины проливают свет на игры. Кажется, что света слишком много? Не пугайтесь. Ваши глаза скоро привыкнут. Как однажды написал преподобный Чарльз Калеб Колтон, «изучение математики, подобно Нилу, начинается с малого и кончается великим».
ГЕНЕАЛОГИЯ МАТЕМАТИЧЕСКИХ ИГР
Игры, о которых я рассказываю в этой книге, рождались в парижских университетах, японских школьных дворах, шумных игорных залах, редакциях аргентинских журналов, их авторы – скромные энтузиасты и бессовестные выскочки, подвыпившие профессора и озорные дети. Эти игры многогранны, ибо многогранна математика; несерьезны, ибо несерьезна математика. И они общедоступны, ибо математика общедоступна, что бы там ни говорили устрашающие формулы и язвительные профи.
Грубо говоря, я позаимствовал игры из четырех областей:
1. Традиционные детские игры, например «Морской бой», «Китайские палочки», «Точки-клеточки».
2. Игры для приятного времяпрепровождения, например «Тико», «Бокс на бумаге» и «Амазонки».
3. Концептуальные игры, придуманные математиками, например «Сим», «Ростки» и «Доминирование».
4. Необычные школьные игры, например «Соседи», «Из ряда вон», «101 – и тебе крышка».
Как появляются игры? Что зажигает математический огонь? Я сам придумал девять игр, и мне бы следовало знать. Но нет единого пути, нет общей родословной. Индия подарила нам шахматы, Китай – го, Мадагаскар – фанорону, а мой двухлетний племянник Скандер – пляски возле пазла с воплем «мовавававава».
Почему математические игры настолько универсальны? Честно говоря, не знаю. Возможно, потому что универсум настолько математичен.
Показательный пример: в 1974 году генетик Марша Джин Фалько начала рисовать символы на каталожных карточках. Это был инструмент исследования: каждая карточка означала собаку, а каждый символ – генетическую комбинацию. Но после перетасовки и перегруппировки карточек все детали отпали. Она увидела чистые комбинации, абстрактные модели. Игру логики. Логику игры. «Материя не привлекает внимания [математиков], – писал Анри Пуанкаре, – их интересует только форма». Ветеринар, заглядывая через плечо Марши, стал задавать вопросы и натолкнул ее на идею игры.
Так родилось любимое развлечение Стивена Хокинга, любимая тема исследований ведущих математиков и одна из популярнейших карточных игр XX века: «Сет».
В том же самом, 1974, году один венгерский архитектор поставил перед собой конструкторскую задачу: можно ли сделать большой куб из маленьких кубиков, которые двигаются независимо друг от друга? Он попытался. И у него получилось. А потом ему взбрело в голову приклеить цветную бумагу на грани кубиков и покрутить их. Это был поворотный момент его жизни. «Парад красок приятно ласкал взгляд, – вспоминал он позже, – но в конце концов я решил, что настала пора возвращаться, как после отменной обзорной экскурсии… и привести кубики в порядок».
Он попытался. Но не тут-то было. Как азартный человек, он увлекся. Спустя месяц куб удалось, наконец, вернуть в исходное состояние. Так Эрнё Рубик стал создателем самой продаваемой игрушки в истории человечества.
«Сет» и кубик Рубика демонстрируют нам два фундаментальных пути математической мысли. Вы можете начать с реальности, как Марша, и отыскивать ее абстрактную структуру или начать с абстрактной структуры, как сделал Эрнё, и искать ее смысл в реальности. В этом плане «Сет» и кубик Рубика не просто позволяют играть другим; они сами являются плодами игры воображения, праздного искусства гениальных приматов, которые никогда не перестают учиться.