Литмир - Электронная Библиотека
Содержание  
A
A

Главное в «Трактате» — вторая часть второго тома, посвященная электромагнетизму. Здесь с единых позиций рассмотрена «поворачивающая сила» Эрстеда, наблюдения Ампера, опыты Фарадея. Словом, проанализировано все известное о связи между электрическими и магнитными явлениями. И выражено это языком математических формул. Они предсказывают неведомое электромагнитное поле, в котором со скоростью света бегут электромагнитные волны, волны эфира, переносящие энергию, излученную источником этих волн.

Максвелл утверждает, что волны продолжают распространяться в эфире и после того, как их источник перестал работать. Продолжают распространяться до тех пор, пока на их пути не встретится препятствие. Это препятствие может их поглотить, поглотить переносимую ими энергию, может отразить их обратно или изменить направление движения.

Формулы утверждали, что электромагнитные волны способны оказывать давление на поглощающие или отражающие их тела.

Формулы сообщали, что свет — не особая субстанция, а лишь разновидность электромагнитных волн, что повергало читателя в недоумение. И это продолжалось до тех пор, пока П. Н. Лебедев не измерил величину давления света. Величину, совпадавшую с вычисленной Максвеллом.

В «Трактате» воплотилась в уравнения и приобрела реальность мысль Фарадея о том, что действие одного тела на другое передается на расстояние через посредство окружающей среды, роль которой может играть эфир.

В то время, когда Максвелл завершал свой «Трактат», в Кембридже была учреждена кафедра экспериментальной физики. Максвелла пригласили занять эту кафедру. Ведь он, отдавая главные силы теоретическим исследованиям, прославился и своими экспериментами, связанными с кинетической теорией газов и с цветовым зрением.

Максвелл колебался, но по настоянию друзей, которых он ценил за их вклад в науку, принял приглашение.

Формальное назначение состоялось 8 марта 1871 года. В октябре того же года он прочел вступительную лекцию. Она была посвящена значению эксперимента в теоретическом познании. Максвелл обратил внимание слушателей на то, что курс экспериментальной физики читается в Кембриджском университете впервые. Он сообщил, что этот курс будет опираться на экспериментальные возможности Девонширской физической лаборатории, строительство которой только развертывалось.

Лектор знакомит студентов с соотношениями между теорией и опытом. При этом он обращает их внимание на существование двух типов опыта. Один из них — иллюстративный, проводимый в целях обучения. Опыт не претендующий на получение новых научных фактов. Опыт, имеющий целью развитие способности слушателей мысленно сопоставлять содержание теорий с явлениями, воздействующими на наши органы чувств. Воздействующими непосредственно, как свет и звук, тепло и тяготение, или через посредство приборов, как магнетизм и электричество.

Задачей опытов другого типа является исследование новых, еще не изученных явлений и процессов. Центральным в этих опытах является процесс измерения. Он дает основу воображению и интуиции, способствует установлению количественных математических связей, характеризующих изучаемое явление и процесс.

Максвелл обращает внимание слушателей на огромные возможности коллективной экспериментальной работы. Он ссылается на идею коллективных опытов, восходящую к Бэкону. Подчеркивает мысль о том, что при таком экспериментировании разрозненные ученые превращаются в регулярную научную армию. Он рассказывает о задуманной великим математиком К. Ф. Гауссом, организованной и руководимой им вместе с В. Вебером работе по долговременному изучению земного магнетизма, приведшей к целому потоку открытий. Увлекает слушателей новейшими гипотезами, проблемами молекулярного строения вещества и внутреннего строения атомов…

Максвелл вложил огромные усилия и собственные средства в создание лаборатории, название которой должно было напоминать о щедрости герцога Девонширского, лорда-канцлера университета.

Но, через некоторое время, лаборатория была переименована в «Кавендишскую лабораторию» — в честь Г. Кавендиша, замечательные исследования которого долгое время оставались неизвестными и были буквально открыты Максвеллом.

Кавендиш опубликовал лишь две из своих работ в области физики. Остальные лежали более ста лет в архивах университета. В 1874 году герцог Девонширский передал Максвеллу двадцать пакетов запыленных манускриптов. Максвелл был поражен замечательными открытиями в области физики и химии, сделанными этим экспериментатором — оригиналом, отшельником и подвижником.

Максвелл не только изучил, но и переписал, готовя к печати, манускрипты Кавендиша. Он повторил, а в некоторых случаях и уточнил все опыты Кавендиша. На это ушло пять лет.

Когда в 1879 году труды Кавендиша вышли из печати, мир узнал, что работая в домашней лаборатории, Кавендиш в 1771 году (за двенадцать лет до Кулона) установил закон взаимодействия электрических зарядов, за шестьдесят лет до Фарадея открыл влияние диэлектрика на емкость конденсатора и измерил диэлектрическую проницаемость ряда веществ. Он предвосхитил закон Ома, а в 1798 году при помощи крутильных весов измерил силу взаимного притяжения двух сферических тел, подтвердив справедливость закона всемирного тяготения.

В ходе этих экспериментов Кавендиш определил величину гравитационной постоянной, входящей в закон тяготения и величину средней плотности Земли. Он получил в 1766 году чистый водород и изучил его свойства, а также получил воду, сжигая водород, и определил состав воды. Вернувшись к этим исследованиям, он в 1771 году определил содержание кислорода в воздухе.

Кавендиш обязан Максвеллу своим вторым рождением.

Последние пять лет жизни Максвелл, не прерывая научной работы, ухаживал за тяжело больной женой, выполняя функции квалифицированной сиделки. Весной 1877 года у него, никогда не жаловавшегося на здоровье, внезапно начались боли в груди. Он никогда не говорил об этом, ежедневно бывал в лаборатории, работал над рукописями Кавендиша, ухаживал за женой.

В июне 1879 года Максвелл сдал рукопись трудов Кавендиша в типографию и впервые признал, что его здоровье пошатнулось. Жена уговорила его уехать в Гленлэр, надеясь на целебное действие родных мест. Но ему становилось хуже, боли стали ужасными, он сильно похудел. В октябре эдинбургский врач сообщил, что ему осталось жить не больше месяца. Он поспешил в Кембридж к прикованной к постели жене.

Максвелл умер 5 ноября 1879 года от рака. Кембридж и ученые всего мира были в глубоком трауре.

Максвелл не дожил до признания его электродинамики. Но он относился спокойно к недоверию одних и к равнодушию других. Он работал. Работал всю жизнь.

В Англии его идеи разрабатывали О. Хевисайд, Д. Пойтинг и Дж. ДЖ. Томсон. В Германии Л. Больцман, Г. Гельмгольц, и Г. Герц. В Голландии молодой Г. Лоренц.

О Хевисайде и Герце можно сказать, что они, в определенном смысле, продолжили «переводческую» работу Максвелла. Они облегчили физикам усвоение электродинамики, а, главное, упростили ее применение к решению новых научных задач. Они, независимо один от другого, заменили математический язык Максвелла — двадцать уравнений, которыми Максвелл выразил идеи Фарадея и свои открытия — новыми, более удобным математическим языком, языком векторов. Этим они придали идеям Фарадея и открытиям Максвелла новую наглядность, способствующую обострению интуиции и облегчающую развитие науки.

Герц и Лоренц независимо обратили внимание на ограниченность теории Максвелла и стремились расширить ее. Сохранив в качестве основы электромагнитный эфир Фарадея и Максвелла, они направили свои поиски в противоположных направлениях. Их сближает стремление к неведомому. В следующей главе будет рассказано, как, двигаясь различными, противоположными путями, Герц и Лоренц пришли в один и тот же тупик.

Глава 6. ДВА ПУТИ, ВЕДУЩИЕ В ТУПИК

ЭЛЕКТРОМАГНИТНЫЙ ЭФИР — ТЯЖКИЕ РАЗДУМЬЯ

В этой книге мы неоднократно встречались с эфиром, с тем, как изменялись взгляды ученых на его свойства, на роль в явлениях природы.

42
{"b":"837639","o":1}