Эйлер понимает, что гипотезу о существовании эфира нужно согласовать с тем фактом, что он не влияет на орбитальное движения планет. Это кажется ему простой задачей. Он принимает, что упругость эфира в тысячу раз больше упругости воздуха, а его плотность в 400 миллионов раз меньше плотности воздуха. При такой плотности эфира период орбитального движения Земли увеличится на одну секунду за 2720 лет. Проверка столь малой величины была совершенно недоступна астрономам того времени.
Современником и другом Эйлера был последний из ученых — универсалов М. В. Ломоносов. Он тоже неоднократно выступал с опровержением возможности дальнодействия и тоже был вынужден объяснять тяготение при помощи свойств эфира.
Ломоносов считает, что «Тела приводятся в движение только толканием». Он указывает, что это не противоречит взглядам Ньютона, он пишет: «Одну непосредственную (т. е. близкодействующую, Р.Ж.) причину утверждает и сам Невтон, который притягивательной силы не принимал в жизни, по смерти учинился невольный ее предстатель, излишним последователей своих радением» и далее: «Тяжесть покоющегося тела есть не что иное, как задержанное движение». «Притяжение тел к Земле — с его точки зрения, — вызвано толканием со стороны особой «тяготительной материи».
Ломоносов считает эфир тождественным электрической материи и указывает на то, что свет есть колебательное движение эфира.
Тайна дальнодействия, секрет эфира и загадка природы света, тревожившие Ньютона, будоражили воображение ученых в течение последующих двух веков.
Все они были разрешены в начале двадцатого века одним человеком, которого заслуженно называют Ньютоном наших дней.
Попробуем проследить за извилистыми путями развития познания в области природы света.
Глава 3. ИГРА СВЕТА
ПЕРВЫЕ ШАГИ
1473 год. В мир пришел Коперник. Много событий произошло прежде, чем люди узнали, что он — великий сын человечества. Он по-новому, на основе математики, возродил идею Аристарха Самосского о том, что Солнце и звезды покоятся, а Земля и другие планеты вращаются вокруг Солнца (причем Земля вращается и вокруг своей оси). Пусть это было ошибкой, зато теперь эфир стал ненужным. Он исчез из астрономии вместе с хрустальными сферами Аристотеля и Птолемея. Прежде чем выбросить эфир в мусорную корзину истории науки, Коперник придирчиво листал книгу времен, и надо было быть очень мужественным человеком, чтобы решиться вычеркнуть из нее такого долгожителя как эфир.
Эфир затаился в словарном запасе большинства языков. Поэты, забыв о том, что он был пятой сущностью, придали ему новый, поэтический смысл. И теперь мы, включив радиоприемник, не обращаем внимание на слова диктора — «В эфире наша программа…»
Эти слова — результат нескольких витков эволюции эфира. В них отражена не поэзия, а проза. Проза науки.
Вспомним — на начальном витке пятая сущность — эфир, — породнилась с первой сущностью — с огнем. Первая сущность претерпела удивительную и блестящую эволюцию. Это не должно казаться странным. Ведь по Аристотелю незримая и неощутимая пятая сущность обитала только высоко в небе. Она была чужой земным делам.
Напротив, огонь с глубокой древности дарил людям свет и тепло, защищал от холода и хищников, облагораживал пищу. В сознании первобытных людей огонь был наделен высшей силой. Иногда он уничтожал леса и жилища. Многие народы древнего мира, включая египтян и эллинов, поклонялись ему как божеству.
По мере того, как разрозненные племена объединялись в централизованные государства, а родовой строй уступал место сословным государствам, боги очага были вытеснены культом Солнца, ставшего символом света и тепла, источником жизни.
Наблюдения Солнца, планет и звезд, выяснение закономерностей их движения, бывшие привилегией жрецов, породили одну из древнейших наук — астрономию.
Наука о свете возникла значительно позже. Невозможно определить когда и кто впервые начал изучать оптические явления. В учении о теплоте тоже долго продолжались гадания. Но мы знаем, кто положил начало науке о теплоте. Великий Галилей начал это опытами с термоскопом, а в своих лекциях в 1597 году он показывал прибор для измерения того, что мы теперь называем температурой.
Нет ничего удивительного в том, что наука о теплоте отстала от науки о свете. Ведь представление о тепле и холоде весьма индивидуально. То, что одному кажется теплым, для другого горячо и даже очень горячо. Одному тепло, а другому холодно.
Другое дело — свет. За исключением немногих слепых, лишенных счастья видеть свет, остальным людям днем светло, а ночью темно. Радуга видна всем. Иногда в морозные зимы рядом с Солнцем видны его двойники, чаще видны гало — светлые круги, охватывающие Солнце или Луну. Свет и его отсутствие — темнота выступают, как безусловная реальность.
Живя в тесном общении с природой, люди заметили, что радуга обычно появляется после окончания дождя. Не зная причин ее появления, они попросту считали радугу знамением, предвещающим хорошую погоду.
Вопрос о связи причин и следствий несомненно возникал в глубочайшей древности. Ошибка в ответе на него во многих случаях сказывалась на благополучии и на самой жизни. На низшем уровне, иногда в форме условных рефлексов, формирующихся в результате личного опыта, связь причин и следствий играет большую роль в мире животных.
Несомненно, что многие из людей обнаруживали в золе костров твердые шарики, пропускавшие свет. Некоторые делали из них бусы. Кое-кто шлифовал эти шарики и они становились прозрачными как капли воды. Такие шарики, конечно, очень нравились доисторическим модницам. А мода, это дитя подражания, придавала особую ценность прозрачным твердым капелькам, порожденным огнем.
Наконец неведомый гений заметил, что такие шарики возникают не всегда. Они появляются, если большой костер горит на песчаной почве и песок постепенно смешивается с золой. Он ли, или кто-либо другой догадались, что большие куски прозрачного вещества можно получить, тщательно перемешав песок и золу и сильно нагревая эту смесь в глиняных сосудах.
Так люди научились варить стекло, причем в разных странах это было сделано независимо.
Другие наблюдательные люди заметили, что стеклянные бусы способны концентрировать солнечный свет в яркие пятнышки и в этих пятнышках собирается не только свет, но и тепло.
Выдающийся автор комедий, афинский поэт Аристофан в своих «Облаках», написанных около четырех веков до нашей эры, упоминал о зажигательных стеклах. Это первое письменное сообщение о применении солнечного света. Из комедий Аристофана мы можем заключить, что об этом было известно много раньше.
Аристотель был первым, кто систематически наблюдал явления природы и пытался их объяснить. Он заметил, что прямая палка, опущенная в воду наклонно, кажется надломленной у поверхности воды. Погружая палку то больше, то меньше можно перемещать этот излом вдоль палки. Но, если вынуть палку из воды, она окажется совершенно прямой, без следов излома. Аристотель пытался понять почему так происходит, но не нашел ответа.
Эллинам не удалось достичь понимания природы света. Это же относится к объяснению механизма зрения. Пифагорейцы считали, что глаза испускают особый флюид, «ощупывая» таким образом предметы. Эмпидокл учил, что от светящихся тел к глазу направляются особые истечения, а из глаза навстречу им выделяются другие истечения. При их встрече возникают изображения предметов. Убежденный атомист, Демокрит отвергал флюиды и истечения, указывая, что испуская их, глаза должны видеть в темноте. Он считал, что глаз видит потому, что в него проникают мелкие атомы, исходящие от светящегося предмета. Но он не объяснил почему эти атомы не выделяются в темноте.
Платон утверждал, что от предметов исходит особый флюид. Но предметы становятся видимыми только в том случае, если этот флюид встречается с другим, исходящим из глаз. Аристотель не высказал новых гипотез. Он соглашался с возражениями Демокрита против флюидов и истечений и не придерживался ни одного из объяснений своих предшественников.