Математическая модель управления переходом из одного состояния в другое, которая содержит элементы, реагирующие на неустойчивость, не нарушая её стабильности, является более продуктивной. На практике этот эффект реализуется посредством установления обратной связи (ОС), которая теоретически должна сглаживать негативные тенденции, возникающие вследствие непредсказуемости воздействия внешней среды. Одновременно с ОС следует установить пределы вмешательства общественного регулятора, которым в последнее время всё чаще выступает государство или механизмы, заменяющие и дополняющие его. При некоторой идеализации изучаемой системы и её причинно-следственные связи, она может быть представлена в виде сложной системы и, в частности, описана с помощью аппарата теории игр103.
По степени своей сложности модели можно разделить на два типа: локальные и глобальные. Первые из них ориентированы на изучение конкретных задач, в то время как вторые пытаются представить картину некоего социума в целом. Представляя собой многоуровневую систему, подобные модели воспроизводят не только её динамику, но и поведение входящих в неё подсистем, что подразумевает их изоморфизм. При его отсутствии многоуровневых систем следует разделять на блоки, охватывающие один-два уровня и только после их раздельного анализа объединять.
Функционирование этносоциальных и экономических систем представляет собой самообучающийся процесс, переводящий их с одной эволюционной траектории на другую. Наличие нескольких из них предполагает возможность выбора. Следовательно, выработка оптимальных многовариантных оптимальных стратегий регулятора на основании анализа предыдущих итераций должна операться на принцип Беллмана104. Для описания всего процесса функционирования такой системы применим аппарат процессов Маркова, Байесовское программирование и другие подобные им процедуры, позволяющие учитывать многовариантность и стохастичность всей системы и её элементов.
При анализе этносоциальные процессы целесообразно опираться на принципы фальсификационизма и на его основании критически пересмотреть современные теории и связанные с ними дисциплины. Не отрицая наличие рационального звена в современных экономических моделях и теориях, их следует их „вывернуть на изнанку”, переосмыслить и использовать их в построении принципиально новой модели социальной системы и переход к другим методам управления ею105.
События 2022-23 годов показали, что изначальный тезис экономической теории о том, что экономический базис определяет надстройку, а марксистский тезис, что „Политика есть концентрированное выражение экономики “106, оказались неверными. Предугадав это явление, Жан Бодрийяр107 вёл в обиход понятия гиперреальность и симулякр. В его понимании, повторение любого события или действия существует в трех формах: копии, функционального аналога и собственно симулякра. Последнее явление является всего лишь подражанием и работает по принципу символического обмена108. Эпоха гиперреальности характеризуется утратой реальности: надстройка определяет базис, труд не производит, а социализирует, представительная власть уже никого не представляет. Учитывая все эти обстоятельства, „единственное незатронутое дело – это смерть, на чем зиждется власть и экономия”.109
§7. ДИНАМИЧЕСКИЕ МОДЕЛИ
„Движение каравана определяет шаг самого медлительного осла” (Омар Хайам?)
Динамические модели позволяют описать намного более широкий спектр возможных траекторий и обладают важным преимуществом – наличием обратной связи, позволяющей системе саморегулироваться. Таким образом, формальный математический аппарат незаменим, когда надо строго связать набор предположений относительно системы с прогнозами ее динамики, описываемых параметрами. Например, в экономико-демографических моделях это число людей и ресурсы, которые производит общество, в социально-политических это также население и политическая стабильность110, военно-политических – военно-технический потенциал, мобилизационные ресурсы и логистика. В них в качестве динамических переменных могут выступать геополитическая мощь и энтропия. Они обычно характеризуются нелинейными обратными связями, часто действующими с различными запаздываниями во времени.
Нелинейные модели являются более богатыми в функциональном смысле. В связи с этим существует настоятельная необходимость включения в инструментарий социально-экономического моделирования логистических уравнений, отражающих запаздывание во времени111. Их применение обеспечивает динамическое разнообразие, которое позволяет преодолеть ограниченность линейных систем, описывющих динамические процессы. В них также применяются временные лаги, но сложность математического аппарата112 не позволяет широко его применять.
Например, макроэкономическое моделирование с запаздыванием113 было использовано при исследовании тенденций развития и прогноз будущего развития после вмешательства регулятора. В частности, Р. Гудвин предложил ввести нелинейность запаздывания таким образом, чтобы полученные уравнения имели устойчивый предельный цикл. Его экономические предположения и модель вызвали ряд критических замечаний, а полвека спустя выяснилось, что им в математических преобразованиях допущена ошибка114. Вследствие этого вывод Гудвина о существовании единственного устойчивого цикла оказался ошибочным. Данный пример иллюстрирует, что применение математического аппарата с недостаточно развитой теорией может привести к неадекватным выводам, но является стимулом для дальнейшего прогресса науки.
Возможность научного изучения кризисов долгое время подвергалась сомнению в силу неповторимости и уникальности таких явлений. При их детальном изучении обнаружено много общего и, в частности, доказано, что любое событие – результат самоорганизации открытой системы. Дальнейшие исследования данной проблемы привели к появлению теории катастроф, объединившей две математические дисциплины – теорию гладких отображений115 и теорию бифуркаций динамических систем. Для дальнейшей работы введём некоторые необходимые понятия. Пусть и – пространства переменных и соответственно, D* и D – области в и . Всякое отображение определяется функциями (*). Отображение f называется гладким, если функции (*) являются гладкими функциями116.
Понятие динамической системы – одна из многих полезных теоретических абстракций117. Реальные объекты и системы могут рассматриваться как динамические системы только в определённом приближении и в той мере, в какой при описании их динамики можно игнорировать их структуру и взаимодействие с окружающей средой. О динамической системе говорят в том случае, если можно указать такой набор величин, характеризующих состояние системы, что их значения в любой последующий момент времени определяются по определённому правилу из исходного набора значений. Они называются динамическими переменными, а правило – оператором эволюции системы, который можно представить в виде вектора. Если её состояние задаётся набором из n величин, то динамику системы118 можно представить, как движение точки по траектории в n-мерном фазовом пространстве. В случаях, когда изучается система с дискретным временем, описываемае рекуррентными отображениями, фазовой траекторией является некоторая дискретная последовательность точек в фазовом пространстве.