Литмир - Электронная Библиотека
A
A

Тем не менее для замкнутых, ограниченных систем второе начало термодинамики работает безукоризненно. Именно то обстоятельство, что нет примеров, противоречащих второму началу, приводит нас к уверенности в невозможности вечного двигателя. С точки зрения рассматриваемого подхода, второе начало термодинамики есть отражение стремления физических объектов к своему устойчивому состоянию.

Сравнение эффективности различных устойчивых состояний

На примере исследованного выше шарика рассмотрим относительность эффективности всевозможных устойчивых положений в зависимости от величины воздействующих сил окружающей среды. Допустим, что потенциальное поле представляет поверхность, приведённую на фигуре 2, с потенциальными ямами разного уровня (разной глубины).

Хамса. Пятерица - i_002.png

Фиг. 2

Если энергия флуктуаций (возбуждений) не превышает разности энергий (∆E = E4 – E3) для данного случая минимального потенциального барьера, то шарик будет находиться в довольно устойчивом стабильном состоянии, попав в любую из рассматриваемых потенциальных ям.

Если вероятность попадания в какую-либо яму зависит от линейных размеров ям, то наиболее вероятное устойчивое положение шарика, попавшего в эту систему, соответствует положению во второй яме. И хотя наиболее глубокой ямой, характеризуемой наибольшей устойчивостью, является первая яма, вероятность попадания в это наиболее устойчивое положение в рассматриваемом случае минимально. Вероятность попадания в третью яму занимает промежуточное положение.

Если энергия флуктуаций не превышает величину равности энергий второго по величине энергетического барьера (∆E2 = E5 – E3), но может превышать величину (∆Emin = E4 – E3), то вероятность попадания шариков в разные потенциальные ямы перераспределится в пользу третьей ямы за счёт второй.

Если энергия флуктуаций превышает величину ∆E2, то вероятность попадания в первую яму повышается, но в определённом диапазоне энергий, опять же, за счёт только второй ямы и частично за счёт третьей ямы.

При очень большом количестве шариков необходимо учитывать и заполняемость потенциальных ям. При достаточно больших энергиях флуктуаций и достаточно продолжительном времени их воздействия в этом случае распределение шариков по ямам может приводить просто к закону сообщающихся сосудов. На фигуре 3 пунктирной линией проведён уровень заполненности ям шариками в этом случае.

Хамса. Пятерица - i_003.png

Фиг. 3

Хамса. Пятерица - i_004.png

Фиг. 4

При изменении внешних условий, например, при изменении конфигурации поверхности водоразделов вниз по течению, как показано на фигуре, вероятности попадания в различные потенциальные ямы могут изменяться.

На практике указанная задача может иметь интерес при выборе места для гидроэлектростанции определённой мощности на одной из трёх горных рек и/или при выборе поля для влаголюбивых растений и т. д. В качестве рекомендаций может быть приведён соответствующий вывод о необходимости лесопосадок на каком-либо отроге, что повысит определённый энергетический барьер и будет способствовать снегозадержанию, например, во ворой или третьей ямах, с учётом действующих в этом районе ветров и т. д. Конкретные приложения указанной модели могут быть различными, но здесь этот пример приведён для того, чтобы показать, что:

1) в реальных условиях для одних и тех же объектов может быть несколько устойчивых состояний;

2) одни из них могут быть более устойчивыми, другие – менее устойчивыми;

3) в зависимости от возможного уровня воздействия внешней среды, вероятности реализации различных устойчивых состояний могут перераспределяться;

4) вероятности реализации различных устойчивых состояний могут меняться и с изменением внешних условий.

Для более чёткого представления о влиянии условий окружающей среды на переоценку эффективности различных устойчивых состояний вернёмся к уже частично исследованному примеру взаимодействия камня с Землёй. Выше пренебрежение силами трения привело к выводу о наличии трёх устойчивых состояний, реализуемых при различных значениях начальной скорости камня. Если принять в расчёт силы трения, то в промежуточном случае, когда начальная скорость камня меньше второй и больше первой космической, появляются качественно новые аспекты и выводы несколько изменятся. В промежуточном случае реализуется только относительно устойчивое состояние, которое в конце концов из-за действия сил трения о «звёздную пыль» окажется недостаточно устойчивым.

С космологической точки зрения, наличие «звездной пыли» и т. д. приведёт к тому, что, например, Луна – известный аналог рассматриваемого камня – должна будет в конце концов упасть на Землю. Пока воздействия внешней среды не достигли критических значений, Луна находится в относительно устойчивом положении. Необходимо отметить, что это относительно устойчивое положение Луны может оказаться более устойчивым, чем положение камня на Земле, подверженного большему количеству различных факторов, которые не учитывались в нашем примере (ветер, вода, вулканы и т. п.).

Для явлений, протекающих в течение «всего лишь» тысячи лет или того меньше, орбита Луны почти не отличается от стабильной. Поэтому предложения об устойчивости орбиты Луны при исследовании многих явлений не приводит к ошибочным выводам. А таких явлений, где влияние орбиты Луны является одним из решающих факторов, довольно много: начиная с приливов и отливов, которые, по мнению многих учёных, сыграли большую роль в происхождении и эволюции жизни на земле и до сих пор продолжают существенно влиять на «кухню» погоды.

При очень сильном воздействии внешней среды, например, при внедрении в систему Земля – Луна достаточно массового тела (допустим, с массой, сравнимой с массой Земли) устойчивая орбита Луны может сильно измениться и даже пропасть.

Наличие относительно устойчивых орбит вокруг тела притяжения зиждется на одном очень интересном аспекте, который будет часто затрагиваться ниже. Этот аспект заключается в периодичности движения. При этом через равные интервалы времени объект проходит через одни и те же положения (перигелий, апогей и т. д.). На каждой стадии движения формируются условия для последующей стадии. А конечная (выбор её в циклических процессах, в принципе, произволен)[2] стадия совпадает с начальной. При исключении тормозящего влияния окружающей среды такие процессы и такие орбиты являются вечными и соответствуют абсолютно устойчивым положениям.

Из-за большого разнообразия объектов физического мира и условий их существования устойчивые состояния, к которым они стремятся (без всякого намёка на чью-либо волю, желание), также проявляют многообразие форм и качеств.

Рассмотрим различные свойства относительно устойчивых состояний объектов различных уровней.

Элементарные частицы

Внутренняя структура элементарных частиц неизвестна, даже пока неясно, существует ли она. Тем не менее хорошо известно, что существуют устойчивые и неустойчивые элементарные частицы. Время жизни неустойчивых частиц порядка 10-23÷ 10-6 секунд. За такое мизерное время они в обычных условиях распадаются на устойчивые с выделением энергии. В настоящее время стабильными считаются девять видов элементарных частиц. Это протон, электрон, мюонное и электронное нейтрино, их античастицы и фотон.

Устойчивые частицы могут перейти в разряд неустойчивых, но для этого необходимо достаточно мощное воздействие внешней среды. Чтобы обеспечить такую достаточную мощность воздействия, физики применяют различные ускорители.

вернуться

2

При исследовании циклических процессов зачастую безразличен ответ на вопрос: в начале была курица или в начале было яйцо? Но, по данным палеоархеологов, омническое яйцо появилось у земноводных задолго до появления птиц и в частности куриц.

7
{"b":"795825","o":1}