Литмир - Электронная Библиотека
Содержание  
A
A

Необходимо отличать детерминированный хаос от стохастических процессов, связанных с массой действующих факторов. Эти различия, во-первых, заключаются в том, что детерминированные случайно-подобные процессы полностью воспроизводимы на любом этапе их реализации, в отличие от стохастических, которые таким свойством не обладают. Во-вторых, стохастические процессы сохраняют своё устойчивое поведение в противоположность детерминированным хаотическим. Например, представим себе расписание поездов. Воздействие стохастического фактора существенно не изменит структуры расписания, в отличие от случайно-подобного, который полностью его обрушит.

К моделям, порождающим хаотическое поведение, относят перемешивание, и кухонный миксер отлично выполняет эту операцию. Более мощный алгоритм генерации хаоса заключается в растяжении и сжатии траекторий в пространстве. Наглядно этот процесс демонстрирует «операция пекаря». Когда пекарь печёт пироги, для улучшения качества теста он разминает его с помощью скалки, а затем складывает. В результате близкие траектории разбегаются и становятся далёкими, а далёкие сближаются. При добавлении в тесто капли пищевого красителя уже через два десятка операций первоначальное пятно увеличит свою площадь в 20 млн раз, а его толщина сократится до молекулярного слоя. Краска полностью смешается с тестом. Хаос действует таким же образом. Складывание устраняет первоначальную информацию о системе, а растяжение стирает крупномасштабную, лишая нас возможности каких-либо предсказаний о её поведении [12].

И, несмотря на то, что хаос накладывает ограничения на возможность прогнозирования, он предполагает наличие связей там, где их ранее не подозревал никто. Хаос позволяет находить порядок в различных явлениях, таких как атмосферные фронты, капающий кран, физико-химические процессы.

Так что же такое порядок? В отличие от хаоса – это определённость, малая степень энтропии, периодичность, закономерность, наличие устойчивых связей между явлениями. В свете изложенного в самом хаосе есть порядок. Ещё в первой половине XX века английским математиком Рамсеем была доказана теорема, смысл которой стал понятен лишь в настоящее время – полный беспорядок невозможен. Чем больше мощность хаоса, тем больше в нём очагов порядка. Достаточно управляющими сигналами воздействовать на эти очаги, и станет возможно осуществить переход в упорядоченные состояния, чем сегодня и занимается новая наука – теория управляемого хаоса [13].

В настоящее время идёт поиск законов перехода хаоса в порядок. Если такие законы будут открыты, то нас ждёт научная революция, открывающая фантастические технологические возможности, по сравнению с которыми киборг Т-1000 в фильме «Терминатор-2: Судный день» покажется просто детской игрушкой.

Теория катастроф

В обыденной жизни часто происходят ситуации, которые сопровождаются резкими скачкообразными трансформациями, несмотря на привычные плавные движения. Классические методы математического анализа, основа которых была создана ещё Ньютоном и Лейбницем, ориентированные на исследования гладких плавных изменений, не справляются с описанием и прогнозированием подобных процессов.

Теоретические принципы, сформулированные классической наукой, базируются на парадигме того, что протекающие в нашей действительности процессы рассматриваются в виде постоянно меняющихся параметров. Однако большинство совершающихся трансформаций происходят скачкообразно, резкими качественными изменениями объектов и процессов: внезапное разрушение моста, закипание жидкости, возникновение тюремных бунтов, наступление биржевого кризиса или крушение самолётов. И такие кардинальные метаморфозы возникают обычно на фоне предшествующих весьма плавных изменений системы, когда их появлению вроде бы ничего не предвещает. Собственно катастрофой называется скачкообразные внезапные трансформации, возникающие в системе в виде её ответа на предшествующие плавные изменения внешних условий. При этом такие трансформации крайне плохо поддаются предсказаниям [14]. Однако в современной области математических знаний, которая носит название теории катастроф, разработаны методы, позволяющие в определённых условиях производить оценки подобных явлений.

Вещи не то, чем кажутся. 100 фреймов УНИВЕРСУМА - i_001.jpg

Фазовое пространство Ляпунова. Изменение цвета показывает переход системы от упорядоченного состояния к хаотическому [15]

Французский математик Рене Том предложил называть теорией катастроф топологическую теорию динамических систем, используемую для оценки метаморфоз явлений природы, а также совокупность приложений теории особенностей, указав на наличие в подобных процессах структурной устойчивости. При установленных ограничениях переменных и параметров всё многообразие протекающих процессов можно свести всего к семи (!) классическим топологическим конструктам, к которым и будет стремиться поведение системы [16]. Анализируя топологические портреты, являющиеся особыми зонами в фазовом пространстве состояний, возможно установить границы бифуркационных множеств, при попадании в которые система станет совершать скачкообразные трансформации.

Вещи не то, чем кажутся. 100 фреймов УНИВЕРСУМА - i_002.jpg

Двухмерные образы катастроф. Эллиптическая и параболическая омбилики

При стратификации успеваемости существуют довольно устойчивые группы, соответствующие как максимуму (отличники и близкие к ним студенты), так и слой студентов, соответствующий минимуму – имеющих неудовлетворительную успеваемость и занимающихся по нижней грани оценки удовлетворительно. Они находятся на разных листках топологической поверхности достижений. С точки зрения теории катастроф, в педагогическом процессе основные усилия по контролю знаний и обучению должны быть сконцентрированы на тех студентах, которые находятся в бифуркационной зоне. Так как студенты, имеющие посредственную успеваемость, могут скачком перейти в область хороших и отличных достижений, а хорошо успевающие студенты очень быстро выйти из опасной зоны бифуркации и обрести устойчивый ранг высоких оценок. Располагая данными IQ студентов, параметрами, обеспечивающими качество учебного процесса и используя методы теории катастроф, можно будет прогнозировать, и в определённых пределах более эффективно управлять качеством образования.

Практическое применение теории катастроф заключается в том, что огромное количество явлений, встречающихся в мире, она позволяет свести к очень ограниченному набору стандартных форм, и уже с их помощью провести количественные и качественные оценки динамично изменяющихся феноменов. Так как методы теории катастроф универсальны, они могут использоваться в сфере политики, экономики, управления, медицины, образования и т. п. Таким образом, научное познание получает новые эффективные инструменты для исследования феноменов реальности, до настоящего времени недоступных традиционным методикам и технологиям.

Фракталы в природе и организме человека

Статус математики в отношении природных процессов долгое время был не определён. В действительности нет точек, прямых линий, идеальных кругов и других фигур геометрии Евклида. С точки зрения здравого смысла, математика – это игра разума и задача познания с целью лишь описания явлений и их классификации. Поэтому древнегреческое знание не развило физику и естествознание. Создать физику и другие естественные науки – значит применить к действительности однородные точные математические и геометрические законы.

Только в Новое время Галилей, Ньютон и их последователи смогли обнаружить эти формы в механическом движении и простых механических системах. Тем не менее многие природные системы обладают огромной степенью сложности, несравнимой с использованием простых образов классической геометрии, поэтому их моделирование на такой основе оказывается невозможным. Действительно, как построить модели кроны деревьев, горного хребта, изрезанной береговой линии в объектах евклидовой геометрии? Как смоделировать сложные биологические объекты, обладающие многообразной конфигурацией, такие как нейронная сеть, система кровообращения, ацинусное строение легких, структура почек?

7
{"b":"773698","o":1}