Выяснилось, что при температуре 1015 градусов К (Кельвин, единица измерения температуры), слабое ядерное и электромагнитное взаимодействия сливаются в единое целое и становятся неразличимыми. При температуре 1027 К происходит так называемое Великое объединение, когда сливаются сильные, слабые и электромагнитные взаимодействия. И наконец при энергиях, соответствующих температуре 1032 Кельвина, к ним присоединяется гравитационное взаимодействие. Такие фазовые переходы оказали существеннейшее влияние на раннюю историю нашей Вселенной [37].
Другой важнейшей физической реальностью, с которой связано рождение нашего мира, является вакуум. Вакуум в квантовом мире кардинально отличается от вакуума в классической физике, где он представляется как пустота. В микромире вакуум – это не пустота. Дело в том, что из-за соотношения неопределённости энергии происходят её флюктуации, возникают и исчезают частицы, которые называют виртуальными. В настоящее время энергия вакуума крайне мала, но так было не всегда. Для лучшего понимания вакуум можно сравнить с агрегатными состояниями вещества, при изменении которых поглощается или выделяется энергия. 13,7 млрд лет назад и произошёл такой фазовый переход, в результате чего выделилось огромное количество энергии. За состояние вакуума отвечает поле Хиггса, скалярное поле, присутствующее в пространстве. В самые первые мгновения горячего Большого взрыва во Вселенной с её микроскопическим размером 10-28 см температура превышала состояние «Великого объединения», составляя 1032 градусов Кельвина, а плотность могла достигать планковских величин (1094 г/см3). При падении температуры до 1027 Кельвина происходит «отщепление» гравитации, и это соответствует бифуркационной фазе. Остывая до температуры ниже 1027 Кельвина, возникает фазовый переход, приводящий к нарушению симметрии физических взаимодействий. Однако он осуществляется медленнее по сравнению со скоростью остывания Вселенной. Возникает так называемое явление переохлаждения, что приводит к возникновению ложного вакуума. В отличие от истинного вакуума, плотность энергии ложного вакуума может быть очень велика. Согласно общей теории относительности, давление ложного вакуума оказывает влияние на гравитацию. Ложный вакуум, как особое состояние поля Хиггса, порождает эффект, связанный с отрицательным давлением, приводящий к гравитационному отталкиванию, что создаёт ускоренное расширение Вселенной, масштабы которой экспоненциально увеличиваются каждые 10-34 секунды. Этот период быстрого расширения получил название инфляции. В результате сформировалась фаза с нарушенной симметрией. Поскольку в этих условиях состояние ложного вакуума неустойчиво, то это привело к переходу плотности энергии ложного вакуума в плотность массы обычной горячей материи, что вновь разогрело Вселенную до 1027 градусов Кельвина. Далее Вселенная уже расширяется и охлаждается в соответствии с моделью Большого взрыва [38].
Теория инфляции объяснила отсутствие кривизны за счёт фазы быстрого расширения. Она также ввела на основе теории Великого объединения параметры температуры, плотности, временные характеристики и объяснила превалирование вещества над антивеществом. Так, распад бозонов Хиггса, приведшей к образованию обычных частиц материи и античастиц, оказался несимметричным. Эта теория в современных её модификациях создала условия для развития идей Мультивселенной, согласно которой наша Вселенная с её набором пространственных измерений является всего лишь одной из множества миров, где реализуются N пространственно-временные многообразия, поскольку в момент фазового перехода вакуума могло образоваться много областей пространства, претерпевших фазу инфляции.
Гравитация как деформация пространства
Что больше всего на свете? Такую загадку задавал своим ученикам древнегреческий философ Фалес. Ответить на этот вопрос удавалось далеко не всем. Тем не менее, даже в сложном есть простое. Больше всего на свете пространство, ибо оно объемлет всё. Всё существующее во Вселенной имеет пространственные измерения, и ориентация в пространстве играет огромную роль в деятельности людей.
Представления о сущности пространства кардинально менялись в ходе развития человеческого познания. Так, Аристотель понимал под пространством сумму мест, занимаемых объектами, но рождение классической физики перевернуло представления здравого смысла: физика Галилея, Ньютона начала представлять пространство как протяжённую пустоту, которую в обыденном земном мире никто не видел, поскольку мы живём в газовом пузыре планеты.
Современная физика в лице Эйнштейна пошла ещё дальше, выворачивая наизнанку здравый смысл обыденного человеческого сознания. Теперь под пространством начали понимать жёсткую и упругую среду, которая в 100 тыс. раз прочнее стали и гораздо более упругую, чем резина. Само понятие кривизны или деформации пространства ввёл в науку немецкий математик Гаусс, он 15 лет не публиковал своих научных трудов, опасаясь непонимания среди коллег. Его работы привели к созданию новой науки – топологии, а геометрия Евклида (которую все мы изучали в школе) оказалась лишь частным случаем обширного разнообразия типов геометрий.
Следовательно, при существовании в пространстве кривизны оно неевклидово. В реальном физическом мире поля тяготения и массы вызывают кривизну или деформацию пространства, что проявляется в форме гравитационного взаимодействия. У Исаака Ньютона гравитация – это сила (достаточно вспомнить закон всемирного тяготения), а у Альберта Эйнштейна – уже кривизна пространства.
Чтобы описать кривизну пространства в каждой его точке, необходимы значения двадцати функций координат. Десять из них относятся к части кривизны, распространяющейся в виде гравитационной волны, т. е. «ряби»; другие десять определяют распределения энергий, масс, импульса, углового момента, значение универсальной гравитационной постоянной G. По причине крайне малой величины последней необходимы колоссальные энергии для того чтобы изогнуть континуум. По мнению академика А.Д. Сахарова, обратная величина G и является критерием жёсткости пространства. С точки зрения нашего обыденного опыта, пространство является крайне жёстким. К примеру, общая масса планеты Земля составляет лишь 1/1 000 000 000 (!) кривизны своей собственной поверхности. Представим подброшенный на 5 м в воздух мяч, весь полёт которого будет длиться 2 секунды. За эти 2 секунды свет пройдёт расстояние в 600 000 км. Соответственно, отклонение от прямой за счёт гравитации и будет составлять 5 м на 600 000 км.
Между тем в космосе имеются огромные массы, которые приводят к замыканию пространства, получившие название чёрных дыр. Такие массивные объекты, как правило, находятся в центрах галактик [39]. Они поглощают близлежащие звёзды и накапливают свою массу. По мнению отечественного физика Н.С. Кардашёва, эти объекты могут быть использованы как машины времени. Если войти в чёрную дыру по расчётной траектории, тогда градиент кривизны не окажет разрушительного воздействия на объект, и из-за изменения пространственно-временных проекций можно «прыгнуть» в будущее на сколь угодно далеко.
Тахионы – сверхсветовые частицы, изменяющие порядок времени
Тахионы относятся к загадочным объектам микромира, чьё экспериментальное обнаружение не подтвердилось вплоть до настоящего времени. Тем не менее они органично возникают в суперсовременных теориях физики элементарных частиц, включая и теорию суперструн. Что же такого необычного в свойствах тахионов вызывает их странное поведение?
Одна из уникальных характеристик тахионов – движение со сверхсветовыми скоростями. Кажется, что это противоречит специальной теории относительности Эйнштейна, рассматривающей скорость света как предельную для объектов, имеющих массу покоя, в виду того, что при приближении к скорости 300 000 км/сек, у них резко возрастает масса, и это требует огромного увеличения энергии. При достижении светового барьера масса объекта становится бесконечной. Для того чтобы он достиг световой скорости необходима, соответственно, бесконечная энергия, что невозможно, поскольку бесконечных источников энергии в природе не существует. Данное ограничение можно обойти, если допустить скачкообразное рождение частиц, которые в момент своего возникновения сразу имеют скорость, превышающую световой барьер. Это возможно только в том случае, если тахионы имеют мнимую массу, которая и будет определять их во многом фантастические свойства. Некоторая аналогия указывает на фотоны и, возможно, нейтрино, движущиеся со световой скоростью, сразу в момент своего возникновения, поскольку не обладают массой покоя.