Литмир - Электронная Библиотека
Содержание  
A
A

Понимание того, что квантовые явления находятся в состоянии суперпозиции и демонстрирует их запутанность. Так, если микрообъекты находятся в этих состояниях и, даже если в пространстве они разделены огромными расстояниями, то воздействие на один объект приводит к мгновенному изменению параметров другого объекта. Это получило название принципа нелокальности. До сих пор более-менее внятного объяснения этому феномену нет, поскольку современная наука почему-то считает, что никакое физическое взаимодействие не может распространяться быстрее скорости света.

Возможно, физика XXI века сумеет разрешить эти парадоксы, и агностицизм И. Канта и Н. Бора будет преодолён. Если концепция голографической Вселенной окажется верной, то указанные противоречия могут быть легко объяснимы, и наконец удастся узнать, как выглядит микрофизическая реальность без приборов. Но это будет уже совсем другая наука.

Суперструны как предтеча новой теории Всего

Триумф физики заключается в создании теории относительности, описывающей физические процессы в макромире и квантовой механике, открывающей природу микромира. Несмотря на то, что эти концепции очень точны, попытка их объединения наталкивается на серьёзные методологические трудности, приводящие к парадоксам. Квантовая теория в лице стандартной модели универсальным образом описала и объединила три вида физических взаимодействий: электромагнитное, слабое и сильное ядерное, получив надёжное подтверждение в проведённых экспериментах. Между тем присоединить в рамках этой теории гравитацию до сих пор не удалось. В общей теории относительности гравитация рассматривается как кривизна пространства, в то же время в квантовой механике гравитационной волне как ряби пространства-времени должна соответствовать частица, называемая гравитоном. Построить объединённую теорию, базирующуюся на квантовой гравитации, до сих пор не удаётся. Дело в том, что на микроуровне из-за соотношения неопределённостей рождаются виртуальные частицы. В масштабах размеров меньше порядка 10-15 метра их энергии огромны, что приводит к резким деформациям, а по сути, к вспениванию пространства. В этих условиях математический аппарат квантовой механики перестаёт работать, поскольку в рамках данной теории предполагается, что пространство плоское, т. е. евклидово. Такое парадоксальное противоречие требует пересмотра одной из теорий или отказу от них обеих с заменой на концепцию с более фундаментальным пониманием реальности.

Перспектива в этих исследованиях появилась в 80-х годах прошлого века, когда М.Б. Грином была предложена так называемая теория суперструн. Согласно этой теории, пространство не рассматривалось как совокупность точек, что характерно для квантовомеханических представлений, а имело определённый размер, соответствующий предельному значению 10-35 метра. Другим важным концептуальным подходом явился отказ от трёхмерной пространственной метрики и постулирование многомерного пространства, в частности имеющего девять измерений и время. Более того, предполагалось, что эти пространственные измерения находятся в свёрнутом определённым способом состоянии. В момент Большого взрыва шесть измерений расширились и продолжают расширяться, что характерно и для сегодняшнего состояния Вселенной. В некоторых аспектах этой теории остальные шесть компактифицированных измерений, наоборот, продолжают сворачиваться. Вместо точечного представления частиц постулируется единый объект – суперструна, размеры которой составляют 10-35 метра, а сила натяжения, похожего на струну этого объекта, составляет 1019 Гэв или 1039 тонн. Спектр колебаний, взаимодействующей с пространством суперструны, порождает всё многообразие мира элементарных частиц и предсказывает, что если любое направление спина частицы рассматривать как отдельное с безмассовым состоянием, то всего будет 8064 безмассовых и 18 883 584 с наименьшей, отличной от нуля массой состояний. В теории суперструн гравитация действует в расширенном до девяти пространственных и одного временного измерения. Как и в теории относительности, движение совершается по кратчайшим траекториям, называемым геодезическими, только теперь это поверхность в десятимерном пространстве-времени [11].

В рамках этой теории рассматриваются два вида струн – открытых и замкнутых. Открытые струны имеют концы, с которыми связаны соответствующие заряды. Их колебания порождают безмассовые частицы со спином 1. Открытые струны могут сталкиваться своими концами, порождая третью струну. В то же время она может разорваться, породив пару новых открытых струн. Возможно соединение концов открытой струны, что приводит к образованию замкнутой струны. Колебания замкнутой струны включают безмассовый гравитон со спином 2. Любая теория с открытыми струнами предполагает наличие замкнутых струн, и теории с замкнутыми струнами не могут пренебречь гравитацией. Безмассовые состояния в теории суперструн содержат кроме гравитона частицы со спином 0 и 1/2, а также калибровочные частицы со спином 3/2, называемые гравитино. При энергиях меньше планковских безмассовые частицы тождественны объектам в квантовой теории супергравитации.

Важным моментом в теории суперструн является взаимодействие струнных объектов с пространством. Это приводит к топологическому многообразию пространственных форм. В пространстве могут возникать разрывы, нарушаться непрерывность, меняться связанность, что характеризуется возникновением «дырок». Если струна навьётся на тор, то её колебания проявятся как массивные магнитные монополи. Если теория относительности геометризировала физику, сведя гравитацию к метрическому показателю кривизны, то современная физика всё более топологизируется и требует учёта не только метрических свойств пространства, но и качественных, таких как размерность, связанность, ориентированность, включая всю палитру топологического многообразия.

В настоящее время теория суперструн критически пересматривается. Тому есть несколько причин. Прежде всего, отсутствует возможность её экспериментальной проверки, так как необходимые энергии не могут быть получены на современных ускорителях. Поэтому учёные рассматривают эту теорию как разработанный инструмент для дальнейших исследований. Так, по мнению американских исследователей, есть нечто более фундаментальное, из чего возникает пространство и время. В качестве таковой выдвигается идея параллельной голографической Вселенной, из двухмерного состояния которой в виде проекции, и возникает наш мир. Как отмечает Малдасена, для тестирования квантовой гравитации следует обратиться к космологии. Очевидно, именно там и присутствует то, что сегодня неизвестно и непонятно. В то же время лабораторные эксперименты могут пригодиться, если удастся найти удачные аналогии. А пока вопросы о том «Что есть пространство?» и «Что есть время?» остаются актуальными со времён древних греков.

Хаос и порядок. Прогнозирование и управление случайностями

Что понимается под хаосом, и какими свойствами он обладает? Это высокая степень энтропии, т. е. беспорядка, непредсказуемость, проявляющаяся в виде случайности. К явлениям неподдающимся точному предсказанию относятся атмосферные процессы, движение брошенной игральной кости, течение горной реки, биржевые колебания, броуновское движение.

Ранее считалось, что, обладая огромными вычислительными мощностями, можно предсказать поведение таких процессов. Эта точка зрения была обоснована французским математиком Лапласом. В свете классического детерминизма в этом мире случайностей не существует. Случайность – это наше незнание о процессах.

В начале XX века другой французский математик Пуанкаре опроверг эту точку зрения. Исследования показали – случайность есть объективное свойство природных процессов, и её нельзя устранить, накапливая информацию о системе. Оказалось, что и простые детерминированные системы могут порождать случайность, которую также нельзя устранить, наращивая информацию о них. Такие процессы назвали случайно-подобными. Они определены законами и правилами детерминирующих их изменений, которые не несут никакой случайности. Тем не менее быстрый рост неопределённости не допускает долговременного прогноза.

6
{"b":"773698","o":1}