Мы находим между качающимся маятником и свободно падающим объектом и другие общие черты. Опять-таки, скорость в любом пункте во время падения зависит от разности высот, и максимальная скорость все еще достигается в самой низкой точке – прямо перед тем, как объект коснется земли. А что же насчет времени падения? Мы уже отметили, что время падения маятника определяется периодом. Для изохронного маятника это означает, что время падения, как и период, зависит только от длины нити; то есть не зависит от начальной высоты (амплитуды). Тем не менее мы также заметили, что это особый случай для маятника, а в общем период – а, следовательно, и время падения – будет зависеть от изначальной высоты, так что большая высота увеличивает время падения.
Это также справедливо и для свободно падающих объектов: чем выше начальная высота падения, тем больше времени требуется объекту, чтобы достичь поверхности. Таким образом, взаимоотношения между высотой и скоростью проявляются при свободном падении так же, как и при движении маятника. И снова все это имеет отношение к сохранению энергии. Давайте посмотрим на другую систему – наклонную плоскость.
Движение по наклонной плоскости
Мы уже говорили о наклонной плоскости, когда обсуждали простые механизмы, но теперь мы хотим понять принцип движения катящегося по наклонной плоскости объекта (рис. 2.3)[15]. Сейчас вам должно быть ясно, что, как и в случае с маятником, это еще одна форма свободного падения. Тогда как свободному падению маятника препятствовал трос (нить), движение объекта на наклонной плоскости ограничено только тем, что он катится по наклону.
Рис. 2.3. После толчка объект катится по наклонной плоскости со своей начальной высоты. По ходу движения его скорость растет (а высота уменьшается). Объект достигнет максимальной скорости в самом конце движения по этой плоскости. Время, которое потребуется ему, чтобы достичь поверхности, зависит от начальной высоты (и угла) (см. также сноску 1 на стр. 40, чтобы узнать больше).
Скорее всего, Галилео начал изучать объекты, катящиеся по наклонной плоскости, в 1602 году, но тогда, будучи не уверенным в результате, перефокусировался на маятник. Однако в 1604 году Галилео придумал способ измерить увеличивающуюся скорость объекта, двигающегося по наклонной плоскости. Последовавшие за этим эксперименты предоставили Галилео точные результаты, которые он применял к свободному падению и маятнику.
Галилео было недостаточно знать, что два объекта, отличающиеся массой, падают с одинаковой скоростью. Он хотел знать, как скоро падающий объект достигнет определенной высоты над землей. К сожалению, Галилео встретил на этом пути проблемы, которые необходимо было преодолеть.
Хотя в то время существовали очень точные способы измерить расстояние и вес, подобного прибора для измерения времени не было; Галилео было необходимо создать «секундомер». Секундомер Галилео состоял из контейнера с водой и отверстием внизу. Поскольку вода вытекала из основания контейнера с постоянной скоростью (приблизительно по три унции жидкости в секунду), у Галилео был точный способ измерить время. Галилео описывает свое устройство и гарантирует его точность в «Диалог о двух главнейших системах мира» (снова через Сальвиати) так:
«Для измерения времени мы использовали большой сосуд, наполненный водой, который был расположен под наклоном; к днищу этого судна была припаяна труба маленького диаметра, по которой текла тонкая струя воды, которую мы собрали в маленьком стакане после каждого спуска… Собранную таким образом воду тщательно взвешивали после каждого раза; разница этих весов позволяла нам измерить разницу времени с поразительной точностью, хотя операция повторялась множество раз, – и никакого заметного отличия в результатах замечено не было».
Тем не менее Галилео было непросто даже с водяными часами – скорость объекта в свободном падении для точных измерений была слишком высока. Вместо этого Галилео создал способ замедлить свободное падение, сохраняя ключевые физические результаты, которые и позволили ему позже сделать точные измерения при помощи водных часов[16]. План Галилео был прост и изящен: рассмотреть объект, который катится по наклонной плоскости. Теперь объект «падал» гораздо медленнее, что позволило Галилео произвести точные измерения при помощи часов. Галилео был убежден, что основные принципы физики одинаковы, катится ли объект с определенной высоты (по наклонной плоскости) или совершает свободное падение с той же самой высоты. Следовательно, он предвидел, что математические выражения для расчета времени достижения высоты – пусть и не одинаковые[17] – будут похожи для обоих маршрутов. В конце концов, единственная разница между находящимся в состоянии свободного падения и катящимся вниз с одной и той же высоты объектами заключается в том, что последний двигается как по вертикали (высота), так и по горизонтали (длина)[18], а первый только по вертикали, так как просто падает на землю.
Изначально Галилей предполагал, что вертикальное и горизонтальное направления движения объекта вниз по наклонной плоскости не зависят друг от друга, и их можно рассматривать отдельно. Это означало бы, что законы физики для движения в вертикальном направлении (которое интересовало его больше всего) одинаковы для свободного падения и движения по наклонной плоскости. Что же, оказывается, гипотезы Галилео были верны.
К данному моменту вас не должно удивлять, что скорость объекта, катящегося по наклоненной плоскости[19], увеличивается по мере снижения высоты. Максимальная скорость достигается в самой низкой точке, а время падения (время, которое требуется, чтобы скатиться к основанию наклонной плоскости) не зависит от массы, но непосредственно связано с начальной высотой, как и для (общего случая) маятника, и для свободно падающего объекта.
Так, для всех трех систем результаты одинаковы из-за того, что природа требует сохранения энергии. Кстати, мы не обсуждали подробно, что же в действительно влечет за собой это самое сохранение энергии; похоже, я немного затянул. Тем не менее для обсуждаемых систем у нас есть два фундаментальных типа отношений между высотой и скоростью:
– более низкая высота (от отправной точки) означает, что объект перемещается быстрее – это значит, что его наивысшая скорость будет достигнута в самой низкой точке;
– чем выше начальная высота, тем больше времени будет затрачено на падение, за исключением изохронного маятника, у которого время падения одинаково для каждой высоты.
Давайте посмотрим на другую версию эксперимента Галилео с маятником.
Повторное рассмотрение маятника
В эксперименте с «прерванным маятником» Галилео раскрыл еще больше последствий сохранения энергии. Вспомните, что маятник Галилео был просто свинцовым шаром, весящим одну-две унции, подвешенным на нити. Теперь вообразите маятник, спущенный от гвоздя, вбитого в стену, – маятник, который может свободно качаться из одной стороны в другую. От его точки покоя (где он висит вертикально) мы перемещаем маятник, скажем, вправо на некоторую начальную высоту и затем выпускаем его, не придавая ему ускорения[20].
Поскольку маятник качается справа налево, мы видим, что он достигает своей конечной высоты. Галилео, вероятно, делал это много раз на различных начальных высотах и каждый раз получал один и тот же результат: начальная высота всегда равняется конечной. Ну, честно говоря, конечная высота, вероятно, немного ниже из-за некоторого сопротивления воздуха, но Галилео вывел, что пренебрежение этим приведет к равным высотам, что и было ключевым в этом исследовании.