Литмир - Электронная Библиотека
Содержание  
A
A

«Соответственно, я взял два шара – один из свинца, один из пробки, – причем первый был в сто раз тяжелее второго, и подвесил их с помощью двух одинаковых, равных по размеру нитей около 4–5 локтей в длину. Запустив их движение (одновременно) как маятники, я увидел, что два эти тела совершали колебание по одному и тому же пути, и периоды легкого и тяжелого шара практически совпадали. Это свободное колебание повторялось сотни раз».

Это наблюдение точное лишь отчасти. Возможно, эксперименты Галилео с маятниками относились только к малым колебаниям – или часы, которыми он пользовался, были недостаточно точными. Справедливо, что период колебания маятника зависит от длины нити, а не от массы груза, однако если размах колебания станет достаточно большим, период будет также зависеть от амплитуды – или начальной высоты. В таком случае период станет длиннее, так как увеличивается амплитуда. Так что мы проводим различие и называем маятник, который качается с постоянным периодом, изохронным маятником.

Галилео полагал, что все маятники изохронные, и это послужило почвой для идеи построить надежные часы – в которых он отчаянно нуждался для своих экспериментов. Он хвастался такими часами Республике Соединенных провинций Нидерландов: «Эти часы действительно превосходны для тех, кто наблюдает за движением и астрономическими явлениями, а их устройство очень простое».

Галилей блефовал; у него не было работающей модели этих «простых в изготовлении» часов. Однако у него действительно была теория относительно того, как их построить, которую он разрабатывал со своим сыном, Винченцо (1606–1649), и студентом и первым биографом, Винченцо Вивиани (1622–1703). К сожалению, до самой смерти у Галилео не было готового прототипа. В итоге такой прототип построил его сын в 1649 году, а в Северной Европе о нем узнали из набросков Вивиани.

В 1656 году Христиан Гюйгенс (1629–1695) самостоятельно создал улучшенную версию часов. Он понял, что маятник будет сохранять постоянный период только малых колебаний. Он смог преодолеть этот недостаток, регулируя колебание маятника, чтобы тот двигался не по естественной, круглой, а по измененной кривой, которая поддерживала постоянный период для всех высот. Эта прямая известна как циклоида, или таутохрона. Гюйгенс описал свою версию (циклоидных) часов с маятником в 1658 году в труде Horologium (что на латыни означает «часы») и в 1673 году опубликовал геометрическое доказательство таутохроны как истинной постоянной кривой периода в Horologium Oscillatorium.

Маятник дает нам другое ценное понимание. Мы понимаем, что скорость маятника в определенной точке зависит от текущей высоты по отношению к начальной высоте, что приводит к самой высокой скорости в самой низкой точке колебания. Другими словами, его текущая скорость зависит от разности высот: чем больше это различие (дальше от отправной точки), тем выше его текущая скорость. Поэтому максимальная скорость достигается в самой низкой точке колебания, которая является также пунктом, в котором в конечном счете колебания прекратятся.

Отношения между высотой и скоростью дают нам лучшее понимание сохранения энергии. Галилео еще вернется к изучению маятника и еще больше приблизится к разгадке тайны энергии. Однако, прежде чем мы доберемся до этого, давайте поговорим о свободном падении.

Свободное падение

Из наших рассуждений о маятнике мы узнали, что:

• период колебания никогда не зависит от количества массы груза, присоединенного к концу веревки;

• скорость маятника увеличивается с уменьшением высоты, максимальная скорость – в самой низкой точке колебания.

Эти результаты интересны сами по себе, но станут еще интереснее, как только мы свяжем их с другими типами движения.

Маятник, качающийся назад и вперед, в действительности является просто объектом, «полное» падение которого остановили за счет натянутой веревки. Другими словами, веревка препятствует свободному падению маятника. Подумайте об этом как о человеке, который прыгает с моста с тарзанкой. В первый раз он прыгает как обычно, с тросом, обернутым вокруг тела, который гарантирует, что прыгун в конце не ударится о землю. Конечно, для этого длина троса должна быть (при полном натяжении) меньше, чем высота прыжка, чтобы торможение было безопасным. При втором прыжке длина троса (при полном натяжении) гораздо больше, чем высота падения. Тем не менее внизу находится огромный мат, который должен остановить падение и защитить прыгуна от травм.

Это очень похожие сценарии. Единственное значимое различие – длина троса: он меньше начальной высоты при первом прыжке и больше начальной высоты при втором прыжке. По существу, это отношения между качающимся маятником и свободно падающим объектом. Поэтому мы могли бы ожидать, что физические законы, управляющие обоими этими движениями, схожи.

Свободно падающие объекты привлекали внимание Галилея (см. рис. 2.2).

Аристотель считал, что более тяжелый объект упал бы на землю быстрее, чем легкий, но Галилео подозревал, что такого не будет. Изначально Галилео усомнился в этом, когда был студентом в Пизанском университете. В заметке, написанной несколькими годами позже, Галилео упомянул, что его наблюдения были основаны на наблюдениях за камнями разных размеров, падающими на землю. Галилео наблюдал, как большие и маленькие камни падают на землю одновременно вне зависимости от размера, а не как полагал Аристотель – сначала большой, потом маленький. Учитывая, что оба начали падение одновременно где-то высоко в небе, Галилей пришел к выводу, что Аристотель был неправ.

Галилео был не первым, кто поставил под сомнение теорию Аристотеля о падающих объектах[11], и даже не первым, кто проверил ее верность с помощью эксперимента[12]. Согласно записям Вивиани, когда Галилео был профессором в Пизе (1589–1592), он продемонстрировал ошибочность утверждения Аристотеля о падающих объектах из одинакового материала, но имеющих разный вес, с падающей Пизанской башни:

Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали - i_002.jpg

Рис. 2.2. Объект сталкивают со здания (или башни) – с начальной высоты. Пока он падает, его скорость растет (в то время как высота уменьшается). Он достигает максимальной скорости как раз перед тем, как столкнуться с поверхностью. Время до касания с поверхностью напрямую зависит от начальной высоты.

«…он полностью погрузился в исследование; в результате Галилео, к большому неудовольствию всех философов, с помощью опытов, наглядных примеров и аргументов опроверг идеи самого Аристотеля о движении, считавшиеся в то время истиной: как, например, тот факт, что вес объектов из одинакового материала при движении через одну и ту же среду будет влиять на их скорость (на самом деле она будет примерно одинаковой). Раз за разом в присутствии других преподавателей и студентов он подкреплял эти идеи экспериментами, которые проводил с высоты Падающей Пизанской башни».

Галилео пришел к выводу, что объекты с разным весом из одного и того же материала падают с одинаковой скоростью и за одинаковое время; теория Аристотеля была опровергнута раз и навсегда. Эту историю рассказал Вивиани, который вел записи за Галилео в его последние годы, в 1657 году. Сегодня большинство историков не верят, что Галилео действительно бросал предметы с Пизанской башни.

Независимо от этого, мы не можем не гадать, вывел ли Галилей это следствие из своих наблюдений за маятником.

В конце концов, как мы отметили прежде, маятник – просто измененная версия свободного падения. Поэтому, так как период маятника – также определяющий его время падения [13](время, которое требуется для падения в низшую точку качания) – не зависит от массы[14], не должно быть сюрпризом и то, что время свободного падения объекта (время, через которое он коснется поверхности) также не зависит от нее.

вернуться

11

Первую известную конкурирующую теорию сформулировал математик и астроном Гиппарх (ок. 190–120 до н. э.) спустя примерно два века после Аристотеля. В 1553 году Джамбаттиста Бенедетти (1530–1590) стал первым, кто предложил доказательство того, что объекты, сделанные из одинакового материала и отличающиеся весом, будут падать с одинаковой скоростью в одинаковой среде (например, в воздухе).

вернуться

12

В 1586 году Симон Стевин (1548–1620) показал, что два тела различного веса падают с одинаковой скоростью.

вернуться

13

Период маятника – время, которое требуется маятнику, чтобы совершить колебание и вернуться к исходному положению (например, слева направо и справа налево). Когда мы говорим о времени падения маятника, мы имеем в виду время, которое требуется для того, чтобы переместиться в самую низкую точку колебания. Это позволяет нам проводить сравнения со временем свободно падающих объектов или объектов, двигающихся по наклонной плоскости.

вернуться

14

Мы рассматриваем случай, когда амплитуда была мала, но это верно для всех амплитуд.

5
{"b":"666135","o":1}