Сила, расстояние и работа
Итак, мы видим связь между необходимой силой и пройденным расстоянием при подъеме на определенную высоту с помощью наклонной плоскости. Давайте уточним этот момент: сила, необходимая для перемещения объекта по наклонной плоскости (или лестнице), меньше силы, требуемой для перемещения того же объекта по вертикальной приставной лестнице на ту же высоту. Другими (более математическими) словами:
Fнаклонная плоскость < Fприставная лестница,
где F – это сила, а знак «<» означает «меньше, чем». Цена, которую мы платим за роскошь приложения меньшей силы, – увеличение расстояния, которое мы должны преодолеть:
dнаклонная плоскость > dприставная лестница,
где знак «>» означает «больше, чем». В нашем примере вы перемещаете себя, но в целом это может быть что угодно; возможно, вы нечто несете или двигаете. Независимо от этого отношения между силой и расстоянием всегда сохраняются.
Неравенства, приведенные выше, дают нам четкое понимание взаимоотношений между силой и расстоянием. Основываясь на них, мы легко видим, что при росте одного из показателей другой снижается. Таким образом, между силой и расстоянием существует некий компенсирующий эффект. Фактически эти эффекты прекрасно сбалансированы, и, вне зависимости от того, что мы используем – наклонную плоскость или лестницу, – мы в любом случае выполним одну и ту же работу:
Работа = (сила, затраченная на движение объекта) × (пройденное объектом расстояние).
Поэтому с точки зрения работы при движении с использованием наклонной плоскости в сравнении с использованием приставной лестницы справедливо следующее:
Aнаклонная плоскость = Aприставная лестница,
где A – это работа. Это означает, что объем работы, необходимой для перемещения чего-либо на определенную высоту, остается неизменным. Другими словами, природе все равно, как именно вы что-либо куда-либо доставите; необходимый объем работы будет тем же – ни меньше, ни больше.
Данная закономерность становится понятнее, когда мы рассматриваем случай, в котором мы поднимаем объект на определенную высоту. Чему мы противостоим? Мы противостоим силе притяжения Земли[1], а подъем чего-либо на большую высоту увеличивает потенциальную энергию этого объекта. Позднее мы поговорим о потенциальной энергии подробнее, но сейчас отметим, что работа и энергия тесно взаимосвязаны. Более того, мы начинаем подозревать, что природа имеет тенденцию сохранять энергию.
Заманчиво предположить, что мы могли бы создать машину, которая позволит нам использовать меньше силы, чтобы перемещать объекты, без необходимости дополнительно преодолевать требуемое расстояние. К сожалению, никакого «бесплатного сыра» нет. Когда дело доходит до законов Вселенной, становится ясно, что эта машина в действительности никогда не будет существовать. Возможно, никто не сказал об этом яснее, чем Галилео Галилей (1564–1642):
«Я видел (если не ошибаюсь), как многие механики обманулись, пытаясь использовать механизмы, изначально непригодные для определенных работ, в то время как многие другие также пошли по ложному пути за своими ожиданиями. Это разочарование, как мне кажется, основано на том, что эти люди верили и продолжают верить, будто они смогут поднять больший вес, приложив меньше силы, как если бы их машины могли обмануть природу, которая и без того любит нам отказывать. Ее основной закон: никакое сопротивление нельзя преодолеть меньшей силой, чем исходная».
Тем не менее многие пытались (и до сих пор пытаются) «обмануть» Вселенную тем или иным способом. Ярким примером этого служит «вечный двигатель», который должен выполнять работу бесконечное количество времени посредством минимальных усилий. Как мы увидим позже, он также обречен на неудачу, учитывая систему строгих «сдержек и противовесов» энергии и работы, тщательно сохраняемых Вселенной.
Глава 2
Качание, падение и вращение
Основы энергии
Наше обсуждение простых механизмов показывает, что природа не желает отдавать свою энергию даром. Тем не менее эти устройства упрощают нашу жизнь (и даже сегодня мы продолжаем использовать их как части более сложных машин, которые работают с использованием человеческого труда или топлива), и есть компенсирующий эффект. И, насколько мы знаем, этот привычный уклад не изменить.
Пока люди изучали другие системы, простые или посложнее, эта тема возникала вновь и вновь в разных формах. Эксперименты с качающимися маятниками, падающими объектами и предметами, катящимися вниз – ну, по чему бы еще – по наклонной плоскости (да, опять она, но в этот раз уже не в качестве простейшего механизма), помогли подняться на следующий уровень понимания. Результат этих экспериментов лег в основу понимания энергии. И никто не потратил на изучение этих систем больше времени, чем Галилео Галилей.
Качающаяся люстра
Галилео Галилей, старший из шести детей, родился в Пизе 15 февраля 1564 года в семье Винченцо Галилея и Джулии Амманнати. Винченцо, музыкант-теоретик и практик, жил скромно, зарабатывая исполнением и преподаванием музыки. Часть его работ, однако, была опубликована. В его самой значимой книге, Fronimo (содержавшей много композиций для двух лютней), мы видим выражение настоящей страсти (или аддикции) к музыке: он играл на своей лютне «гуляя по городу, катаясь на лошади, стоя у окна, лежа в постели».
Галилей научился у своего отца нескольким вещам. Благодаря тому, что они с отцом много играли дуэтом – Галилео играл партию второй лютни, – он стал искушенным лютнистом. Как и его отец, Галилео был вольнодумцем, и они оба любили выставлять авторитетных людей дураками, например, побеждая их в споре. Как устойчивый сторонник эмпирического исследования, Винченцо проводил эксперименты, чтобы проверить свои музыкальные теории. В частности, он установил фундаментальные отношения между частотой колебаний струны и ее натяжением: частота колебаний прямо пропорциональна квадратному корню из натяжения. Уважение отца к необходимости проверять теорию с помощью экспериментального наблюдения, несомненно, влияло на Галилео, поскольку стало краеугольным камнем всех его научных изысканий. Его мать, хотя и была образованной женщиной, была упряма, отличалась трудным характером и была слабо привязана к Галилео или его младшему брату Микеланджело, который за год до смерти матери (а она умерла в 1620 году) с удивлением отмечал, что она была «все так же ужасна».
Галилео жил в Пизе, пока ему не исполнилось десять, а затем переехал во Флоренцию. После некоторого начального обучения у наставника (который брал пять лир в месяц) он наконец поступил на учебу в монастырь Валломброза под Флоренцией. Тогда-то, скорее всего, и начался его роман с астрологией. Кроме того, тогда же он почувствовал интерес к религии – но его отец тут же пресек это, забрав Галилео из монастыря под предлогом того, что его глаза нуждались в медицинском уходе.
Решив, что Галилео должен построить карьеру в медицине (вероятно, потому что это была престижная и хорошо оплачиваемая профессия и потому что самый выдающийся предок их семьи был доктором), Винченцо в 1581 году записал сына в Пизанский университет. В те дни чтобы стать доктором, нужно было знать наизусть естественную философию Аристотеля. Это задача, должно быть, была разочарованием для Галилео, который написал: «Кажется, что нет ни одного явления, стоящего внимания, с которым он [Аристотель] столкнулся бы без рассмотрения».