Литмир - Электронная Библиотека
Содержание  
A
A

1.3.6. Классификация радионуклидов

Работы А. Беккереля, П. и М. Кюри, Э. Резерфорда и других исследователей на пороге XX столетия открыли новую страницу в естествознании: было установлено, что радиоактивность является неустранимым свойством многих природных тел. Последующее открытие ядерных реакций (Э. Резерфорд), искусственной радиоактивности (Ф. и И. Жолио-Кюри), а затем реакций деления ядер (О. Ган, Ф. Штрассманн) и синтез трансурановых элементов (Э. Макмиллан, Ф. Эйблсон, Г. Сиборг) существенно увеличили количество индивидуальных (т.е. характеризуемых константой λ) объектов, называемых радионуклидами.

Научный подход к описанию любого разнообразия включает требование классификации. В данном случае эта проблема выглядит несравнимо проще, чем та фундаментальная классификация, которую выполнил Д. И. Менделеев, сформулировав периодический закон: дело в том, что любой радионуклид является радиоактивным изотопом того или иного химического элемента.

Поэтому в предлагаемом конспекте лекций авторы выбрали первым классификационным основанием происхождение радионуклидов, поскольку именно эта информация является наиболее важной для установления источников распространения радионуклидов не только в техносфере, но и в биосфере в целом.

Сведения о естественных радионуклидах, не входящих в радиоактивные семейства и не имеющих космогенного происхождения (т.е. не образующихся в результате взаимодействия космического излучения со стабильными нуклидами вещества геосферы), помещены в табл.1. Достоверность некоторых данных о естественной радиоактивности до сих пор проблематична. Это находит свое выражение, в частности, и в том, что наиболее ответственные и проверенные временем тексты (энциклопедический словарь, публикации МКРЗ) включают далеко не весь перечень радионуклидов, упоминаемых в других источниках.

Данные, приведенные в табл.1, практически не учитываются в деятельности людей, т.к. чрезвычайно высокие периоды полураспада этих радионуклидов являются причиной их низкой удельной активности, которая ни в технологическом, ни в радиоэкологическом отношениях не является значимым фактором первостепенной важности. Исключением здесь, пожалуй, являются радионуклиды 40K и 87Rb, радиобиологическая роль которых уже достаточно выяснена и продолжает уточняться в дальнейших исследованиях. Табл.2 содержит данные об основных радионуклидах космогенного происхождения.

Нижеследующая схема представляет собой классификацию существующих и синтезируемых радионуклидов.

Фундаментальная радиохимия - _26.png

Табл.1. Естественные радионуклиды, не имеющие природного генератора

Фундаментальная радиохимия - _27.png

Табл.2. Радионуклиды космогенного происхождения

Фундаментальная радиохимия - _28.png

1.3.7. Последовательный радиоактивный распад

1. "Генетическая пара"

Рассмотрим случай, когда продукт распада некоторого радионуклида тоже радиоактивен, но после его распада образуется стабильный изотоп. Будем индексами "1" и "2" помечать параметры и переменные, относящиеся соответственно к "материнскому" и "дочернему" радионуклидам. При этих условиях эволюция "генетической пары" представляет собой вариант классической "бассейновой" задачи: "Прирост числа атомов дочернего радионуклида в единицу времени равен разности скоростей актов распада материнского и дочернего радионуклидов, поскольку скорость распада материнского радионуклида равна скорости возникновения дочернего":

Фундаментальная радиохимия - _29.png
. (1.18)

Это линейное неоднородное дифференциальное уравнение первого порядка можно решить, например, методом Лагранжа (метод вариации постоянной). В результате при наложении условия, что при t = 0 N02 = 0 решение (1.18) будет иметь вид:

Фундаментальная радиохимия - _30.png
(1.19)

Графически эволюция "генетической пары" изображена на рис.1.1.

Фундаментальная радиохимия - _31.png

Рис.1.1. Изменение активности при Т1 >Т2 (примем условно Т1=10Т2): 1 – суммарная активность; 2 – активность дочернего радионуклида; 3 – активность материнского радионуклида.

Важной особенностью взаиморасположения графиков является совпадение точки максимума активности (числа атомов) дочернего радионуклида и точки пересечения графиков A1(t) и A2(t) (так же и временных зависимостей N1 и N2). В этом можно убедиться, решив соответствующие уравнения: dA2/dt=0 и A1=A2 откуда момент времени (tmax), соответствующий этой точке, определяется следующим образом:

Фундаментальная радиохимия - _32.png
. (1.20)

2. Подвижное равновесие

Это состояние в эволюции "генетической пары" достигается только при условии λ2 > λ1. В случае λ2< λ1 равновесие в любом смысле слова отсутствует, но соотношение (1.20) остается справедливым. Обозначим λ2 – λ1 = Δ λ и преобразуем (1.11) следующим образом:

Фундаментальная радиохимия - _33.png
. (1.21)

По истечению некоторого времени вследствие монотонного убывания экспоненты можно сделать упрощение 1-е-Δ λt H1, приняв заранее определенный уровень погрешности. Но для абсолютного большинства практически интересных случаев можно условно допустить, что этот момент времени совпадает с tmax (см.(1.20)). После упомянутого упрощения соотношения (1.21) приобретают вид:

Фундаментальная радиохимия - _34.png
, (1.22)

т.е. отношение чисел атомов дочернего и материнского радионуклидов, равно как и значений их абсолютной активности, перестает зависеть от времени, inv (t), в то время как сами значения N1 , N2,, A1 и A2 продолжают явным образом зависеть от времени.

Таким образом, для "генетической пары" необходимым и достаточным условием наступления подвижного равновесия является неравенство λ2 > λ1 (или, что то же самое, T2 < T1). Это равновесие наступает не раньше прохождения дочерней активности через максимум и заключается в том, что осуществляются соотношения (1.22). Таким образом, рис.1.1 отражает изменение активности для генетически связанной пары радионуклидов для случая подвижного равновесия.

3. "Вековое" равновесие

Примем более жесткое условие неравенства: λ2 >> λ1 (Т2<<Т1), но при этом допустим, что период полураспада материнского радионуклида значим в геохронологическом отношении, т.е. уменьшение его активности в технологическом масштабе времени (несколько часов, суток, лет) на точность количественных оценок не влияет. Например, активность радионуклида калий-40 (Т = 1,32·109 лет) по истечению даже миллиона лет уменьшится всего лишь на 0,05%, а за сто лет и вовсе незначимо:5·10–6 %. На этом основании можно принять А1H const, что позволяет еще более упростить (1.22) следующим образом:

9
{"b":"633433","o":1}